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Notation  

Symbols  The symbols used in this publication have the following meaning:  

Symbol Description Units 

A Area of column cross-section m2 

a, b, c  Plan dimensions of slab supported on several sides m 

D Dissipation of internal energy kNm 

E Expenditure of energy by external loads kNm 

g  Ultimate distributed dead load kN/m2 

gk Characteristic distributed dead load kN/m2 

H1, H2 … Holding down reaction at slab corner kN 

h1, h2 … Yield line pattern defining dimension m 

i, i1, i2…. Ratio of negative support moment to positive midspan moment, 
i.e  i1 = m1’/m 

 

l Length of a yield line (projected onto a region’s axis of rotation) m 

L   Span (commonly edge to edge), distance,  m 

m  Positive moment, i.e the ultimate moment along the yield line  
(bottom fibres of slab in tension).  

kNm/m 

m’, m1’, 
m2’ 

Negative moment, i.e the ultimate moment along the yield line  
(top fibres of slab in tension). 

kNm/m 

mr  Ultimate moment of resistance (based on the steel provided) kNm/m 

n  Ultimate distributed load   p + g kN/m2 

p  Ultimate distributed live load kN/m2 

pa, pb Ultimate line load kN/m 

pk Characteristic distributed live load kN/m2 

q1 , q2 … Ultimate support reaction kN/m 

S Ultimate column reaction from slab tributary area kN 

s1, s2 Distance to point of contraflexure from support m 

x1, x2  Distance to section of max. positive moment from support m 

∆  δmax Deflection, maximum deflection (usually taken as unity) m 

θ Angle of rotation m/m 

nh  Adjusted ultimate distributed load (adjusted for light line loads 
through factors α and β). 

kN/m2 

ar, br Reduced sides dimensions m 

 

Drawing notation The convention used in drawings and sketches is given below 

Supports 
 Free edge  Continuous support 

 Simple support  Column support 

 

Yield lines 
  m  Positive (sagging) yield line, 

kNm/m 
  Axis of rotation 

  m’ Negative (hogging) yield line, 
kNm/m 

  Plastic hinge (in sectional 
elevation or in plan) 

 

Loads 
 Line load, kN/m       + 

P ● Point load, kN   

Centre of gravity of load kN 
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1.0 Introduction  
This publication  

The aim of this publication is to (re-) introduce practical designers to the use of Yield Line 
Design. The intention is to give an overall appreciation of the method and comprehensive 
design guidance on its application to the design of some common structural elements.  It 
assumes that the user has sufficient experience to recognise possible failure patterns and 
situations where further investigation is required. 
 
The basic principles of Yield Line theory are explained and its application as a versatile 
method for the design and assessment of reinforced concrete slabs is demonstrated. Theory 
is followed by practical examples and the accompanying commentary gives insights into the 
years of experience brought to bear by the main author, Gerard Kennedy. 
 
The publication is intended as a designer’s aid and not an academic paper. It commits to 
paper a practical approach to the use of Yield Line for the design of concrete slabs. It 
gives guidance on how to tackle less simple problems, such as the design of flat slabs, 
rafts, refurbishment and slab-beam systems. Whilst the publication covers the design of 
common elements, it is an introduction, not a comprehensive handbook: in more 
exacting circumstances, designers are advised to consult more specialist 
literature. The examples are practical ones that may be followed, but should not be 
extended too far without reference to more specialist literature.  
 
Yield Line Theory challenges designers to use judgement and not to rely solely on computer 
analysis and design. Once grasped, Yield Line Theory is exceedingly easy to put into 
practice and everyone in the procurement chain benefits. Simple design leads to simple 
details that are fast to detail and fast to fix. Current initiatives such as Egan [4] and 
partnering, etc, should challenge designers to revisit and re-evaluate the technique. 

 
1.1 The essentials 
1.1.1  What is Yield Line Design? 

Yield Line Design is a well-founded method of designing reinforced concrete slabs, and 
similar types of elements. It uses Yield Line Theory to investigate failure mechanisms at 
the ultimate limit state. The theory is based on the principle that:  

work done in yield lines rotating  = work done in loads moving 

Two of the most popular methods of application are the ‘Work Method’ and the use of 
standard formulae. This publication explains these two methods and illustrates how they 
may be used in the practical and economic design of reinforced concrete slabs such as flat 
slabs, raft foundations and refurbishments  
 

1.1.2  What are the advantages of Yield Line Design? 
Yield Line Design has the advantages of: 

• Economy 

• Simplicity and 

• Versatility 
 
Yield Line Design leads to slabs that are quick and easy to design, and are quick and easy 
to construct. There is no need to resort to computer for analysis or design. The resulting 
slabs are thin and have very low amounts of reinforcement in very regular arrangements. 
The reinforcement is therefore easy to detail and easy to fix and the slabs are very quick 
to construct. Above all, Yield Line Design generates very economic concrete slabs, 
because it considers features at the ultimate limit state.  
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Yield Line Design is a robust and proven design technique. It is a versatile tool that 
challenges designers to use judgement. Once grasped Yield Line Design is an exceedingly 
powerful design tool. 
 

1.1.3  What is the catch? 
Yield Line Design demands familiarity with failure patterns, i.e. knowledge of how slabs 
might fail. This calls for a certain amount of experience, engineering judgement and 
confidence, none of which is easily gained. This publication is aimed at ‘experienced’ engineers, 
who will recognise potential failure patterns. At the same time it is hoped that the publication 
will impart experience to younger engineers and encourage them to appreciate modes of 
failure and this powerful method of design.  
 
Yield Line Design tends to be a hand method. This may be seen as both an advantage and 
disadvantage. Each slab has to be judged on its merits and individually assessed. The method 
allows complex slabs to be looked at in a simple way, and, in an age of computers, it gives an 
independent method of analysis and verification. This is especially important for those who are 
becoming disillusioned with the reliance placed on Finite Element Analysis. They see a need to 
impart greater understanding and remind designers that reinforced concrete does not 
necessarily behave in an elastic manner. Nonetheless it is hoped that the option of suitable and 
accessible software for Yield Line Design will become available in the near future. 
 
Yield Line Design concerns itself with the ultimate limit state. It does not purport to deal with 
serviceability issues such as deflection per se. Nonetheless, deflection can be dealt with by 
simple formulae based on the yield moment. This publication shows how compliance with 
span-to-depth criteria may be achieved. 
 
Column moments cannot be derived directly. They must be derived using separate elastic sub-
frame analyses as is the case when using continuous beam analysis (assuming knife edge 
support), or by analysing separate yield line failure patterns discussed in section 4.17. 
 
In the past Yield Line Design has been disadvantaged by half-truths and misrepresentations. 
Taking reasoned and pragmatic measures to overcome them easily dispels theoretical 
problems such as ‘upper bound theory therefore unsafe’. These measures are discussed in this 
publication. This is perhaps the first time this practical approach has been set down in writing - 
advocates of Yield Line Design have been designing in this way for years. 
 

1.1.4  Economy and simplicity 
In slabs, Yield Line Design gives least weight reinforcement solutions coupled with least 
complication. These points were illustrated on the in-situ building of the European Concrete 
Building Project at Cardington [1] where, uniquely, many different methods of design and  
 

Table 1.1  Configurations of flexural reinforcement in the in-situ building at Cardington [1] 

Floor 
no 

Flexural reinforcement Tonnes 
/floor* 

Bar marks 
/floor 

1 Traditional loose bar - Elastic Design    16.9     75 

2 Traditional loose bar - Elastic Design    17.1     76 

3 Rationalised loose bar - Elastic Design    15.3**     54 

4 Blanket cover loose bar - ½ Yield Line design 
                                  - ½ Elastic Design 

   14.5* 

   23.2* 

    22 

    33 

5 One-way mats - Elastic Design    19.9     42 

6 Blanket cover two-way mats - FE Design    25.5     20 

7 Not part of the particular research project   

*  Values given are for a whole floor.  

** 1.6T additional reinforcement would have been required to meet normal deflection criteria 
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detailing were carried out, constructed and compared. Yield Line Design was used on the 4th 
floor and required the least amount of reinforcement as shown in Table 1.1. This shows that 
for a complete floor, 14.5 tonnes of reinforcement would have been used using Yield Line 
Theory compared to 16.9 tonnes using more conventional elastic design methods. 
 
The Yield Line Design at Cardington also led to very few bar marks being required: only 
the heavy blanket cover solution required fewer. 
 
The economy of Yield Line Design is further illustrated in Figure 1.1, which shows the 4th 
floor at Cardington [1] during construction. The steel fixers are laying out the T12@200 B 
(565 mm2/m) reinforcement for the yield line half of the slab adjacent to the T16 @ 175 B 
(1148 mm2/m) in the elastically designed half towards the top of the picture. Each half of 
the slab performed well. 
 

 

Figure 1.1  European Concrete Building Project at Cardington - 4th floor during 
construction 

The half in the foreground was designed using Yield Line Design. The other 
elastically designed half was intended to be ‘highly rationalised’. However, 
the number of bar marks used in the Yield Line Design was less than even 
the most rationalised of the Elastic Designs.  It is worth noting that the 
deflections measured on the two halves under the same load were virtually 
identical. 

 
With Yield Line Theory the designer is in full control of how the moments are distributed 
throughout the slab. This leads to the opportunity to use simple reinforcement layouts – 
regular spacing of bars and fewer bar marks – that are easier for the designer, detailer, 
contractor and fixer. These arrangements are far more regular than with other methods of 
analysis such as Elastic or Finite Element Analysis. 
 
These bar arrangements are premeditated and lead to the following advantages: 

• For the detailer, regular layouts mean minimum numbers of bar marks. Often stock 
lengths can be specified.  

• Drawings are quicker to produce, easier to detail and easier to read on site. 

• Regular arrangements of reinforcement mean quicker fixing.  

• The principles of simple reinforcement layouts are well suited to prefabrication of 
steel into welded mats and also to contractor detailing 

• There is less chance of errors occurring 

• Checking is easier.  
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1.1.5  The opportunity 
The management consultants who undertook research at Cardington [1] concluded: 
“Yield Line Design appears to provide a great opportunity for more competitive concrete 
building structures….” 
 

1.1.6  Versatility 
Once understood, Yield Line Design is quick and easy to apply. It may be used on all 
types of slab and loading configurations that would otherwise be very difficult to analyse 
without sophisticated computer programmes. It can deal with openings, holes, irregular 
shapes and with any support configuration. The slabs may be solid, voided, ribbed or 
coffered, and supported on beams, columns or walls. 
 
The following are typical areas of application: 

• An irregularly supported flat slab as shown in Figure 1.2, may, as illustrated by 
Figure 1.3 (and Section 4.3), be analysed by considering yield line patterns in the 
form of folded plates or worst-case quadrilaterals.  

 
 

Figure 1.2  An irregular flat slab…. 

 
 

Figure 1.3  …..may be analysed using Yield Line Design – by considering quadrilaterals 

 

• Yield Line Theory can be used very effectively in refurbishment work. It is used in 
the assessment of existing slabs and can be especially useful where the support 
system is amended and/or new holes have to be incorporated. (New holes are dealt 
with by adjusting the length of postulated Yield Lines.) Yield Line Theory can be 
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used to estimate the ultimate load capacity of such slabs and so optimise and/or 
minimise structural works on site.  

 

• The theory can be used to analyse slabs with beams: composite T and L beams may 
be incorporated into a combined collapse mechanism. Yield Line Theory is used 
effectively in the design and assessment of slabs in bridges. 

 

• Yield Line Theory can also be applied to slabs resting on soil, i.e. industrial 
ground floor slabs, foundation rafts etc. The piled raft foundation illustrated in 
Figure 1.4 was analysed and designed using Yield Line Theory - simply and by hand 
(see Example 4F). 

 

 

Figure 1.4  A piled raft – easily dealt with using Yield Line Theory and Design 

 
 
 

Pattern 2a

Pattern 2b

Pattern 2c

REGION
B

REGION
C

REGION
D

REGION
A
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1.2 Frequently asked questions 
Yield Line Design is easy to grasp but there are several fundamental principles that need 
to be understood. Yield Line Design is a plastic method: it is different from ‘normal’ elastic 
methods, and to help with the transition in the thought processes, definitions, 
explanations, main rules, limitations, etc have been gathered together here in this section  
 

1.2.1  What is a yield line? 
A yield line is a crack in a reinforced concrete slab across which the reinforcing bars have 
yielded and along which plastic rotation occurs. 
 

1.2.2  What is Yield Line Theory? 
Yield Line Theory is an ultimate load analysis. It establishes either the moments in an 
element (e.g. a loaded slab) at the point of failure or the load at which an element will 
fail. It may be applied to many types of slab, both with and without beams. 
 
Consider the case of a square slab simply supported on four sides as illustrated by Figure 
1.5. This slab is subjected to a uniformly distributed load, which gradually increases until 
collapse occurs. 
 
Initially, at service load, the response of the slab is elastic with the maximum steel stress 
and deflection occurring at the centre of the slab. At this stage, it is possible that some 
hairline cracking will occur on the soffit where the flexural tensile capacity of the concrete 
has been exceeded at midspan. 
 
Increasing the load hastens the formation of these hairline cracks, Increasing the load 
further will increase the size of the cracks further and induce yielding of the 
reinforcement, initiating the formation of large cracks emanating from the point of 
maximum deflection. 
 
On increasing the load yet further, these cracks migrate to the free edges of the slab at 
which time all the tensile reinforcement passing through a yield line yields. 
 

 

 

Figure 1.5  Onset of yielding of bottom reinforcement at point of maximum deflection 
in a simply supported two-way slab 

 

Square slab simply supported

Hair cracks

Large cracks emanating
from point of maximum
deflection

Cracks shown are on slab soffit
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At this ultimate limit state, the slab fails. As illustrated by Figure 1.6, the slab is divided 
into rigid plane regions A, B, C and D. Yield lines form the boundaries between the rigid 
regions, and these regions, in effect, rotate about the yield lines. The regions also pivot 
about their axes of rotation, which usually lie along lines of support, causing supported 
loads to move. It is at this juncture that the work dissipated by the hinges in the yield 
lines rotating is equated to work expended by loads on the regions moving. This is Yield 
Line Theory. 
 

 

Figure 1.6  The formation of a mechanism in a simply supported two-way slab with the 
bottom steel having yielded along the yield lines 

Under this theory, elastic deformations are ignored; all the deformations are assumed to 
be concentrated in the yield lines and, for convenience, the maximum deformation is 
given the value of unity. 
 

1.2.3  What is a yield line pattern? 
When a slab is loaded to failure, yield lines form in the most highly stressed areas and 
these develop into continuous plastic hinges. As described above, these plastic hinges 
develop into a mechanism forming a yield line pattern. 
 
Yield lines divide the slab up into individual regions, which pivot about their axes of 
rotation.  Yield lines and axes of rotation conform to rules given in Table 1.2, which help 
with the identification of valid patterns and the Yield Line solution.  
 

Table 1.2  Rules for yield line patterns 

• Axes of rotation generally lie along lines of support and pass alongside any 
columns. 

• Yield lines are straight. 

• Yield lines between adjacent rigid regions must pass through the point of 
intersection of the axes of rotation of those regions.  

• Yield lines must end at a slab boundary. 

• Continuous supports repel and simple supports attract positive or sagging yield 
lines. 

For a more detailed appraisal of the
situation at corners see Section 1.2.11

Axes of rotation along
supports to rigid
regions A,B,C & D

Yield lines forming
yield line pattern

A

DB

C
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1.2.4  What is a Yield Line solution? 
In theory, there may be several possible valid yield line patterns that could apply to a 
particular configuration of a slab and loading. However, there is one yield line pattern that 
gives the highest moments or least load at failure. This is known as the yield line solution.  
 
The designer has several ways of determining the critical pattern and ensuring safe 
design: 

• From first principles, e.g. by using The Work Method  

• Using formulae for standard situations.  
 
It will be noted that valid yield line patterns give results that are either correct or 
theoretically unsafe. These ‘upper bound solutions’ can deter some designers but, as 
discussed later, this theoretical awkwardness is easily overcome by testing different 
patterns and by making suitable allowances (see 10% rule later). 
 

1.2.5  How do you select relevant yield line patterns? 
A yield line pattern is derived mainly from the position of the axes of rotation, (i.e. the 
lines of support) and by ensuring that the yield lines themselves are straight, go through 
the intersection of axes of rotation and end at the slab boundary, i.e. conform to the rules 
in Table 1.2. Some simple examples are shown in Figure 1.7. Considering a slab to be a 
piece of pastry laid over supports may help designers to visualise appropriate yield line 
patterns. 
 
The aim of investigating yield line patterns is to find the one pattern that gives the critical 
moment (the highest moment or the least load capacity). However, an exhaustive search 
is rarely necessary and selecting a few simple and obvious patterns is generally sufficient 
as their solutions are within a few percent of the perfectly correct solution. Section 2.1.12 
illustrates that absolute dimensional accuracy is unnecessary for engineering purposes. 
 

 

 

Figure 1.7  Simple Yield Line patterns 

 

1.2.6  What is a fan mechanism? 
Slabs subjected to heavy concentrated loads may fail by a so-called fan mechanism, with 
positive Yield Lines radiating from the load and a negative circular Yield Line centred 
under the point load. This mechanism is shown in Figure 1.8. It is rare for this form of 
failure to be critical but nonetheless a check is advised where large concentrated loads are 
present or for instance in flat slabs where the slab is supported on columns. 
 
 

Column
Axes of 
rotation
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                                       m = positive (sagging) moment, kNm/m 

                              m’= negative (hogging) moment, kNm/m 

Figure 1.8  Fan collapse pattern for a heavy concentrated load onto a reinforced slab 

The mechanism for a slab supported by a column is the same shape but 
with the positive and negative yield lines reversed. 

 

1.2.7  What is the Work Method? 
The Work Method (or virtual Work Method) of analysis is the most popular (and most 
easy) way of applying Yield Line theory from first principles. Indeed, many experienced 
users of Yield Line theory of design choose to use the Work method because it is so very 
easy. The fundamental principle is that work done internally and externally must balance. 
In other words, at failure, the expenditure of external energy induced by the load on the 
slab must be equal to the internal energy dissipated within the yield lines. In other words:  
 

External energy 
expended by loads moving 

= 
Internal energy  
dissipated by rotations about yield lines 

Expended =  Dissipated 

E = D 

Σ (Ν x δ) for all regions  = Σ (m x l x θ) for all regions 

where 

N = load(s) acting within a particular region [kN] 

δ = the vertical displacement of the load(s) N on each region expressed as a 
fraction of unity [m] 

m = the moment in or moment of resistance of the slab per metre run [kNm/m] 

l = the length of yield line or its projected length onto the axis of rotation for that 
region [m] 

θ = the rotation of the region about its axis of rotation [m/m] 

 
By way of illustration, consider the slab shown in Figure 1.6.  Figure 1.9 shows an 
axonometric view of this two-way simply supported slab that has failed due to a uniformly 
distributed load.  Note that: 

• The triangular regions A, B, C and D have all rotated about their lines of support.  

• The loads on the regions have moved vertically and rotation has taken place about 
the yield lines and supports.  

• The uniformly distributed load on each of these regions will have moved on average 
1/3 of the maximum deflection. 

 
The rotation of the regions about the yield lines can be resolved into rotation about the 
principal axes of rotation, and thereby measured with respect to the location and size of 
the maximum deflection. 
 
 

m'

m

Point load

r
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Figure 1.9  Deformed shape at failure  

 
This, fundamentally, is the ‘Work Method’. Any slab can be analysed by using the principle 
of E = D. Some judgement is required to visualise and check likely failure patterns but 
absolute accuracy is rarely necessary and allowances are made to cover inaccuracies. 
Once a yield line pattern has been selected for investigation, it is only necessary to specify 
the deflection as being unity at one point (the point of maximum deflection) from which 
all other deflections and rotations can be found.  
 
The Work Method is covered in more detail in Chapter 2. 
 

1.2.8  Formulae 
Rather than go through the Work Method, some practitioners prefer the even quicker 
method of using standard formulae for standard types of slab. The formulae are 
predominantly based on the work method and they are presented in more detail in 
Chapter 3.  
 
As an example, the formula for one-way spanning slabs supporting uniformly distributed 
loads is as follows [2,6]:  
 

( )
2

2

1 2

nL
m

2 1 i 1 i
=

+ + +
      per unit width 

where 

m =   ultimate sagging moment along the yield line [kNm/m] 

m’ =   ultimate support moment along the yield line [kNm/m] 

n  =   ultimate load [kN/m2] 

L =   span [m] 

i1 , i2 =   ratios of support moments to mid-span moments. (The values of i are chosen 
  by the designer: i1= m’1/m, i2= m’2/m)  

 
Where slabs are continuous, the designer has the freedom to choose the ratio of hogging 
to sagging moments to suit any particular situation. For instance, the designer may 
choose to make the bottom span steel equal to the top support steel (i.e. make sagging 
moment capacity equal support moment capacity.) 
 
Failure patterns for one-way spanning slabs are easily visualised and the standard 
formulae enable the designer to quickly determine the span moment based on any ratio of 
hogging moments he or she chooses to stipulate (within a sensible range dictated by 
codes of practice). Formulae are also available for the curtailment of top reinforcement.  
 

A
D

C

B

Point of maximum deflection
at centre of slab

Point of maximum
deflection at
centre of slab

Rotation

Rotation

θΒ

θΑ
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Formulae for two-way spanning slabs supported on two, three or four sides are also 
available for use. These are a little more complicated due to the two-way nature of the 
problem and the fact that slabs do not always have the same reinforcement in both 
directions. The nature of the failure patterns is relatively easy to visualise and again the 
designer has the freedom to choose fixity ratios. 
 
The formulae are presented and discussed in Chapter 3. 
 

1.2.9  Is Yield Line Theory allowable under design codes of practice? 
Yes.  
 
Any design process is governed by the recommendations of a specific code of practice. In 
the UK, BS 8110 [7] clause 3.5.2.1 says ‘Alternatively, Johansen’s Yield Line method …. 
may be used…. for solid slabs’. The proviso is that to provide against serviceability 
requirements, the ratio of support and span moments should be similar to those obtained 
by elastic theory. This sub-clause is referred to in clauses 3.6.2 and 3.7.1.2 making the 
approach also acceptable for ribbed slabs and flat slabs. 
 
According to Eurocode 2 [3], Yield Line Design is a perfectly valid method of design. 
Section 5.6 of Eurocode 2 states that plastic methods of analysis shall only be used to 
check the ultimate limit state. Ductility is critical and sufficient rotation capacity may be 
assumed provided x/d ≤0.25 for C50/60.A  Eurocode 2 goes on to say that the method 
may be extended to flat slabs, ribbed, hollow or waffle slabs and that corner tie down 
forces and torsion at free edges need to be accounted for.  
 
Section 5.11.1.1 of EC2 includes Yield Line as a valid method of analysis for flat slabs. It is 
recommended that a variety of possible mechanisms are examined and the ratios of the 
moments at support to the moment in the spans should lie between 0.5 and 2. 
 

1.2.10  Yield Line is an upper bound theory  
Yield line theory gives upper bound solutions - results that are either correct or 
theoretically unsafe, see Table 1.3. However, once the possible failure patterns that can 
form have been recognised, it is difficult to get the yield line analysis critically wrong 
 

Table 1.3 Upper and lower bound ultimate load theories 

Ultimate load theories for slabs fall into two categories:  
• upper bound (unsafe or correct) or  
• lower bound (safe or correct). 

 
Plastic analysis is either based on 

• upper bound (kinematic) methods, or on 
• lower bound (static) methods.  

 
Upper bound (kinematic) methods include:  

• plastic or yield hinges method for beams, frames and one-way slabs;  
• Yield Line Theory for slabs. 

 
Lower bound (static) methods include:  

• the strip method for slabs,  
• the strut and tie approach for deep beams, corbels, anchorages, walls and 

plates loaded in their plane. 

 

                                                       
A This relates to an ultimate moment, M, ≈ 110 kNm in a 200 mm slab or an M/(bd2fk) ≈ 0.100. For higher concrete 
strengths, x/d  ≤ 0.15). Class B or C reinforcing steel must be used, i.e. characteristic strain at maximum force, Єuk, ≥ 
5.0%. 
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The mention of  ‘unsafe’ can put designers off, and upper bound theories are often 
denigrated. However, any result that is out by a small amount can be regarded as 
theoretically unsafe. Yet few practising engineers regard any analysis as being absolutely 
accurate and make due allowance in their design. The same is true and acknowledged in 
practical Yield Line Design.  
 
In the majority of cases encountered, the result of a Yield Line analysis from first 
principles will be well within 10%, typically within 5%, of the mathematically correct 
solution. The pragmatic approach, therefore, is to increase moments (or reinforcement) 
derived from calculations by 10%. This ‘10% rule’ is expanded upon later. 
There are other factors that make Yield Line Design safer than it may at first appear, e.g. 
compressive membrane action in failing slabs (this alone can quadruple ultimate 
capacities), strain hardening of reinforcement, and the practice of rounding up steel areas 
when allotting bars to designed areas of steel required. 
 
The practical designer can use Yield Line Theory with confidence, in the knowledge that 
he or she is in control of a very useful, powerful and reliable design tool.  
 

1.2.11  Corner levers 
‘Corner levers’ describes the phenomenon in two-way slabs on line supports where yield 
lines split at internal corners. This splitting is associated with the formation of a negative 
yield line across the corner which ‘levers’ against a corner reaction (or holding down force 
– see 3.2.2).  Corner levers particularly affect simply supported slabs and Figure 1.10 
shows the effect corner levers can have on a simply supported square slab. It should also 
be noted that the sagging moment m in an isotropic slab increases with decreasing corner 
fixity. Table 1.4 illustrates the effects of continuity on both the extent of the corner levers 
and on positive moments [13]. At an average fixity ratio of 1.0 the effects are minimal. 
Nonetheless, if the corners are left unreinforced, span moments increase. 
 

 

Figure 1.10 The effect of corner levers on a simply supported square slab where 
corners are held down and prevented from lifting. 
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Table 1.4  Effects of corner continuity on corner levers in a simply supported square slab [13] 

Corner fixity 
i = m’/m 

x h 
m 

[kNm/m] 

Positive moment 
increase in the slab 
due to corner lever 

0 0.159a 0.523a na2/22 9.0% 

0.25 0.110a 0.571a na2/23 4.3% 

0.50 0.069a 0.619a na2/23.6 1.7% 

1.00 0 - na2/24 - 

 
For simplicity in the analysis, yield line patterns are generally assumed to go into corners 
without splitting, i.e. corner levers are ignored and an allowance is made for this. This 
simplification is justified for three principle reasons: 

• The error for neglecting corner levers is usually small. 

• The analysis involving corner levers becomes too involved. 

• Corner levers usually bring out the beneficial effects of membrane action that 
negate their impact.  

 
All methods and formulae in this publication are based on straight-line crack patterns that 
go into the corners. The values of the moments obtained in this way are only really valid if 
the top reinforcement provided in the corners is of the same magnitude as the bottom 
steel provided in the span. If this is not the case, as generally assumed, then the straight-
line pattern will not form and some type of corner lever will appear depending on the 
amount of top reinforcement provided, if any. This in turn leads to additional moment to 
be added to the calculated positive (sagging) moment.  
 
The exact amount of increase depends on a number of parameters, but generally about 
4% to 8% is assumed for rectangular two-way slabs. At worst, for simply supported 
square slabs, the increase is approximately 9%. The effects of corner levers in slabs 
supported on four sides diminishes in rectangular slabs and begin to die out at a ratio of 
sides greater than 3:1. In triangular slabs and slabs with acute corners, the straight-line 
mechanism into the corners can underestimate the positive moment by 30% 35%. The 
whole matter of corner levers is covered in some detail in Chapter II of Plastic and elastic 
design of slabs and plates [13] and chapter 12 of Yield-Line Analysis of slabs [14]. 
 
The effects of corner levers have to be recognised. For regular slabs their effects are 
allowed for within ‘the 10% rule’ – see below. 
 
Despite this, it is good practice, and it is recommended, to specify and detail U-bars, 
equivalent to 50% of the span steel around all edges, including both ways at corners.  
 

1.2.12  The 10% rule  

A 10% margin on the design moments should be added when using the 
Work Method or formulae for two-way slabs to allow for the method being 
upper bound and to allow for the effects of corner levers 

 
The addition of 10% to the design moment in two-way slabs provides some leeway where 
inexact yield line solutions have been used and some reassurance against the effects of 
ignoring corner levers (see above). At the relatively low stress levels in slabs, a 10% 
increase in moment equates to a 10% increase in the designed reinforcement.   
 
The designer may of course chase in search of a more exact solution but most 
pragmatists are satisfied to know that by applying the 10% rule to a simple analysis their 
design will be on the safe side without being unduly conservative or uneconomic. The 
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10% rule can and usually is applied in other circumstances where the designer wants to 
apply engineering judgement and err on the side of caution. 
 
The only situations where allowances under this ‘10% rule’ may be inadequate relate to 
slabs with acute corners and certain configuration of slabs with substantialB point loads or 
line loads. In these cases guidance should be sought from specialist literature [5,6,14].  
 

1.2.13  Serviceability and deflections 
Yield Line Theory concerns itself only with the ultimate limit state. The designer must 
ensure that relevant serviceability requirements, particularly the limit state of deflection, 
are satisfied.  
 
Deflection of slabs should be considered on the basis of elastic design. This may call for 
separate analysis but, more usually, deflection may be checked by using span/effective 
depth ratios with ultimate (i.e. yield line) moments as the basis. Such checks will be 
adequate in the vast majority of cases [8].  
 

BS 8110 

Deflection is usually checked by ensuring that the allowable span/effective depth ratio is 
greater than the actual span/ effective depth ratio (or by checking allowable span is 
greater than actual span). The basic span/depth ratio is modified by factors for 
compression reinforcement (if any) and service stress in the tension reinforcement. The 
latter can have a large effect when determining the service stress, fs, to use in equation 8 
in Table 3.10 of BS 8110 [7]. When calculations are based on the ultimate yield line 
moments, one can, conservatively, use βb values of 1.1 for end spans and 1.2 for internal 
spans. This point is touched on in Example 3C and examined in the Appendix under 
Serviceability Moment. 
 
Where estimates of actual deflections are required, other approaches, such as the 
rigorous methods in BS 8110 Part 2, simplified analysis methods [8] or finite element 
methods should be investigated. These should be carried out as a secondary check after 
the flexural design based on ultimate limit state principles has been carried out. 
 
In order to keep cracking to an acceptable level it is normal to comply (sensibly) with the 
bar spacing requirements of BS 8110 Clauses 3.12.11.2.7 and 2.8. 
 

Eurocode 2  

Eurocode 2 treats deflection in a similar manner to BS 8110. Deemed-to-satisfy span-to-
depth ratios may be used to check deflection. Otherwise calculations, which recognise 
that sections exist in a state between uncracked and fully cracked, should be undertaken. 
 

Johansen 

Johansen [6], who was responsible in large part for the development of Yield Line Theory, 
saw little point in making particularly accurate deflection calculations – it was more 
important to understand the magnitude of the deflection. One reason he cited was the 
variation in concrete’s modulus of elasticity.  
 
Johansen covered a number of situations that are difficult to analyse without resorting to 
finite element methods. For instance his method for checking deflection of a slab 
supported on two sides is used in the design of a balcony illustrated in Example 3G.  
 
Johansen’s formulae for one-way, two-way and flat slabs are given in the Appendix. 
 

                                                       
B  Where, say ΣGkpoint and line load > 1/3 (ΣGkudl  + ΣPkudl) more onerous local failure patterns could develop. 
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1.2.14  Ductility 
Yield Line Theory assumes that there is sufficient ductility in the sections considered for 
them to develop their collapse mechanism through curvature and maintain their full 
ultimate moment of resistance along their entire length.  
 

 

Figure 1.11  Typical stress-stain diagrams of reinforcing steel [3] 

 
More generally, ductility is important for two main reasons: 

• safety – warning of collapse and  

• economy – through load sharing.  
 
The ductility of steel reinforcement is a familiar phenomenon. However, many factors 
affect ductility of reinforced concrete sections and unfortunately no simple analytical 
procedure has been devised to enable a required curvature or ductility factor to be 
calculated. [12]. Tests have shown that slabs generally have the required ultimate 
curvature capacity.  
 
Nonetheless, to ensure adequate ductility, design codes generally restrict allowable x/d 
ratios and modern codes [3] restrict the types of reinforcing steel used to ensure that the 
reinforcement yields before concrete fails. Although BS 8110 [7] has no specific 
restrictions, Eurocode 2 [3] and others [12] recommend that Class ‘B’ and ‘C’ should be 
used with plastic analyses such as Yield Line Theory. In other words, elongation at 
maximum force, Agt(%), should be at least 5% and this may rule out cold drawn wire 
used in many meshes. 
 
Table 1.5  Minimum characteristic reinforcement strain at maximum stress 

Class to EC2 Table C.1 A B C 

Elongation at maximum force Agt(%)  
(≡ Characteristic strain at maximum force, εuk) 

≥2.5 ≥5.0 ≥7.5 

 

1.2.15 Flat slabs 
Flat slabs on regular supports are regarded as being one-way spanning slabs in each of 
two directions. Flat slabs on irregular supports should be checked critically for one-way 
plate failures and should also be investigated by applying the Work Method to worst case 
failure patterns. In each case, local fan yield line failure mechanisms over columns are 
checked – but due to the usual practice of concentrating top reinforcement over columns, 
they are rarely critical. These slabs are also checked for punching shear and deflection in 
the usual manner. The design is explained in more detail in Sections 4.1 to 4.3.  
 

ft = kf0.2kft = kfyk

fyk
f0.2k

ε ε

σ σ

εuk εuk

a)  Hot rolled steel b)  Cold worked steel rods

0.2%
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Yield Line Design produces very economic sections and enables very rational layouts of 
reinforcement in flat slabs. CIRIA Report 110 [38] on design of flat slabs, says “The Yield-
Line method of analysing slabs results in the most economic arrangements of 
reinforcement, and it gives close agreement with the actual behaviour of slabs at collapse 
conditions.” More recently, it has been recognised that “to compete, design engineers 
would do well to increase their use of Yield Line, which remains the best way to design 
flat slabs” [9]. 
 
Yield line methods are used to ensure realistic factors of safety against collapse but as 
discussed above, should not be used to check deflection (or punching shear). Deflection 
should be checked using span/effective depth ratios. If estimates of deflection are 
required, the reader is referred to other methods and other publications [8].  
 
Punching shear can control the thickness of flat slabs. However, assuming punching 
reinforcement is acceptable, the thickness of contemporary flat slabs is most often 
controlled by deflection. To help with punching shear, the designer may choose to 
concentrate most (sometimes all) of the top reinforcement required in a bay close to the 
column and so maximise the value of allowable design concrete shear stress local to the 
column.  
 

1.2.16  Some other technical questions answered 
Isotropy 

An isotropic slab is one with the same amount of bottom reinforcement both ways, and, 
by assuming effective depths are equal, moment capacities in the two directions are 
equal, i.e. mx = my. They are easily dealt with and are the subject of most of the text in 
this and other publications on yield line analysis and design  
 
For convenience in design, the effective depth, d, is assumed to be equal both ways and 
is taken as being at the interface of the two layers.  
 

Orthotropy and Affine transformations  

Orthotropic slabs have different amounts of reinforcement in the two directions. Very 
often there is no need for the reinforcement in two-way rectangular slabs to be the same 
in two directions. These slabs tend to span in the short direction and this direction will 
have the greater requirement for reinforcement.   
 
The analysis of such slabs can be done using affine transformations. In these the stronger 
direction is assumed to have the moment capacity, m, and in the weaker direction the 
capacity of the slab is assumed to be µm. The value of µ is usually based on the relative 
amounts of reinforcement the designer wishes to use in the two directions. In an affine 
transformation, µ and √µ are used to modify the dimensions and concentrated loads on 
the slab so that the orthotropic slab transforms to, and can be treated as, an equivalent 
isotropic slab of modified dimensions and loading. As an isotropic slab, all the usual 
formulae and methods for dealing with two-way slabs thus become available and are 
valid. Section 2.3 illustrates the technique. 
 

Superimposition of loads 

Unlike elastic methods, Yield Line Theory is non-linear and the principle of superimposition 
of loads is strictly inapplicable. However, the sum of the ultimate moments for a series of 
loads is greater than the ultimate moment for all the loads at one time. So for a 
complicated load arrangement, a conservative solution may be found by summing 
moments from individual loads.  
 
The accuracy of the resulting moment depends on how divergent the individual Yield Line 
patterns are. The more divergent these patterns are from each other the less accurate the 
result i.e. the greater the conservatism of the result. 
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Other methods 

The authors acknowledge that there are a number of other ways of applying Yield Line 
Theory. Some of these are described in the Appendix.  The methods advocated in this 
publication are based on those of Jones and Wood [14] and are considered to be easy to 
grasp and easy to use commercially. 
 

1.2.17  Some other applications 
Besides the design of normally reinforced concrete suspended slabs, Yield Line Theory 
may be applied in a number of other areas: 
 

Slabs on grade 

Industrial ground floor slabs are traditionally designed using either the Westergaard or 
Meyerhof methods. While Westergaard uses elastic theory, the more up-to-date methods 
advocated by Meyerhof and his successors Losberg and Weisgerber depend on the Yield 
Line Theory [26, 34, 39, 40, 41]. 
 
Consider a concentrated load applied to the top of a ground-supported slab. As the load 
increases tensile stresses are induced in the bottom of the slab, giving rise to radial cracking 
emanating from the point of application of the load. These radial cracks increase in length 
until the bending stresses along a circumferential section of the slab become equal to the 
flexural strength of the concrete and a circumferential tension crack is formed on the top, at 
which point failure is assumed to have occurred. The formula that Johansen [6] used, and 
which his successors later extended, to establish the collapse load Pu in flexure is: 

 

( )p
3u

c

P 1 2 m m
p

 σ
′ − = π +

 
 

 

 

Where  

m, m′  are the sagging and hogging flexural moments of resistance of the 
slab respectively. 

represents the resistance of the soil (this term is usually ignored). 

 

Where 

pσ  The plastic modulus of subgrade reaction (conservatively 
the elastic modulus of subgrade reaction might be used). 

p
3
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σ
 

  

cp  is the stress on the slab under the contact area of the 
concentrated load 

 
If the resistance of the soil to the slab failure is ignored the formula simplifies to 
 

( )uP 2 m m′= π +  
 
These particular formulae apply only when the load is far enough from any edge not to be 
influenced by it. (See formulae presented in Tables 3.10 and 3.11.) 
 
Although, conventionally, mesh reinforcement is ignored with respect to flexural capacity 
of the slab, reinforcement can be used to increase capacity but adequate ductility of the 
section would need to be assured. Research in connection with updating Concrete Society 
TR 34 [26] has shown that adequate ductility is available, allowing a new design method 
to be advocated. Concretes with steel fibres have been shown to give sufficient ductility to 
allow some redistribution of moment.   
 
In the design of these slabs, punching shear and serviceability issues of surface cracking, 
deflection, joints and surface regularity also need to be addressed. 
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Post-tensioned flat slabs 

The design of suspended post-tensioned flat slabs comes down to the checking the 
following: 

• stresses in concrete and steel,  

• the serviceability limit states of cracking, deflection and vibration,  

• detail design and  

• the ultimate limit states of flexure and punching 

at various stages of construction and use. Yield Line Theory may be applied when 
considering the ultimate limit state of flexure [42]. 
 
Post-tensioned slabs may use bonded or unbonded tendons with normal reinforcement 
supplementing the top of the slab around columns over an area of approximately 0.4L x 
0.4L and the bottom of the slab in end bays by between 0.05 to 0.15% to limit the size 
and distribution of cracks. 
 

Concrete bridges 

Yield Line Theory is used in the assessment of short span reinforced concrete and post-
tensioned in-situ concrete bridges. Dr L A Clark [36] concluded that, from the 
considerable amount of both theoretical and experimental research carried out on the 
application of Yield Line Theory to short to medium span concrete slab bridges, good 
agreement had been obtained between measured collapse loads and those predicted by 
Yield Line Theory. More recently a new technique for performing Yield Line analysis has 
been developed [35].  This is implemented in a computer program called COBRAS. This 
approach provides a simple, rapid and practical means of performing Yield Line analysis of 
bridges. 
 

Concrete bunkers 

Yield Line Theory has also been used quite extensively in the design of concrete plate 
elements that are required to withstand the forces generated by explosions in both 
domestic and military applications. 
 

Steelwork connections 

Yield Line theory may be used for the sizing steel plates in bolted connections, which are 
subjected to out of plane forces. Steel is a material ideally suited to the plastic 
redistribution of stresses. 
 

Masonry walls 

In the design of masonry structures the Code of Practice [43] allows the use of Yield Line 
Theory for the design of walls subject to lateral loading, even though masonry is a brittle 
non-homogeneous material. When walls were tested to failure the collapse loads were 
compatible with the loads predicted by the theory.  
 

1.2.18  A short history of Yield Line Theory 
Yield Line Theory as we know it today was pioneered in the 1940s by the Danish engineer 
and researcher K W Johansen [5,6]. As early as 1922, the Russian, A Ingerslev [15] 
presented a paper to the Institution of Structural Engineers in London on the collapse 
modes of rectangular slabs. Authors such as R H Wood [13,14], L L Jones [14,16], A 
Sawczuk and T Jaeger [17], R Park [11], K O Kemp [18], C T Morley [19], M Kwiecinski 
[20] and many others, consolidated and extended Johansen’s original work so that now 
the validity of the theory is well established making Yield Line Theory a formidable 
international design tool.  In the 1960s 70s and 80s a significant amount of theoretical 
work on the application of Yield Line Theory to slabs and slab-beam structures was 
carried out around the world and was widely reported. 
 
To support this work, extensive testing was undertaken to prove the validity of the theory 
[21 - 25]. Excellent agreement was obtained between the theoretical and experimental 
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Yield Line patterns and the ultimate loads. The differences between the theory and tests 
were small and mainly on the conservative side. In the tests where restraint was 
introduced to simulate continuous construction, the ultimate loads reached at failure were 
significantly greater than the loads predicted by the theory due to the beneficial effect of 
membrane forces. 
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2.0 The Work Method of analysis 
2.1 General 

The Work Method of analysis is one-way, probably the most popular way of applying Yield 
Line Analysis to analyse slabs from first principles.  It is considered to be the quickest way 
of analysing a slab using hand calculations only. It can be applied and used on slabs of 
any configuration and loading arrangement.  
 
The only prerequisite is that the designer has a reasonably good idea of the modes of 
failure and the likely shape of the crack pattern that will develop at failure. This is not as 
difficult as it sounds. Having studied the basic failure patterns that are formed by the 
majority of slab shapes encountered in practice, the designer soon develops a feel for the 
way a slab is likely to fail and the confidence to turn this feel into safe and practical 
designs. Provided the numeric methods shown below are used, and, if necessary, 
iterations made, the Work Method gives solutions that are, almost always, within 10% of 
that attained by an exact algebraic approach using a differentiation process. In 
recognition of this possible inexactness, it is recommended that ‘the 10% rule’ (see 
Chapter 1) be applied.  
 

2.1.1  Caveat 
In order to present the principles of the Work Method in simple terms, the text in this 
chapter is (and the application of this chapter should be) restricted to ‘normal’ rectangular 
slabs with reinforcement in two directions at right angles to each other and parallel with 
the sides of the slab. The sides of the slab form the axes of rotation of the individual rigid 
regions. 
 
This restriction is not that onerous as it probably covers the vast majority of situations 
likely to occur in practice. However once the principles for these slabs are understood it is 
a small step to extend this to other cases. A more generalised treatise of this subject is 
given in Chapter 3 of Wood and Jones’ Yield-line analysis of slabs [14]. 
 

2.1.2  Preface 
Before explaining how to apply the Work Method of analysis it may help to review the 
stages involved in the failure of a slab: 

• Collapse occurs when yield lines form a mechanism.  

• This mechanism divides the slab into rigid regions.  

• Since elastic deformations are neglected these rigid regions remain as plane areas. 

• These plane areas rotate about their axes of rotation located at their supports. 

• All deformation is concentrated within the yield lines: the yield lines act as elongated 
plastic hinges. 
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2.2 The Work Method 
2.2.1  Principles 

As explained in Chapter 1, the basis of the Work Method is simply that at failure the 
potential energy expended by loads moving must equal the energy dissipated (or work 
done) in yield lines rotating. In other words:  
 

External energy 
expended by the displacement of loads 

= Internal energy  
dissipated by the yield lines rotating 

 Expended = Dissipated 

E = D 

Σ (Ν x δ) for all regions  = Σ (m x l x θ) for all regions 

where 

N is the Load(s) acting within a particular region [kN] 

δ is the vertical displacement of the load(s) N on each region expressed 
as a fraction of unityC  [m] 

m is the moment or moment of resistance of the slab per metre run 
represented by the reinforcement crossing the yield line [kNm/mD] 

l is the length of yield line or its projected length onto the axis of 
rotation for that region [m] 

θ is the rotation of the region about its axis of rotation [m/m] 

 
Once a valid failure pattern (or mechanism) has been postulated, either the moment, m, 
along the yield lines or the failure load of a slab, N (or indeed n kN/m2), can be 
established by applying the above equation.  
 
This, fundamentally, is the Work Method of analysis: it is a kinematic (or energy) method 
of analysis.  
 

2.2.2  Quantifying E 
The external energy expended, E, is calculated by taking, in turn, the resultant of each 
load type (i.e. uniformly distributed load, line load or point load) acting on a region and 
multiplying it by its vertical displacement measured as a proportion of the maximum 
deflection implicit in the proposed yield line pattern. For simplicity, the maximum 
deflection is taken as unity, and the vertical displacement of each load is usually 
expressed as a fraction of unity. The total energy expended for the whole slab is the sum 
of the expended energies for all the regions. 
 

2.2.3  Quantifying D 
The internal energy dissipated, D, is calculated by taking the projected length of each yield 
line around a region onto the axis of rotation of that region, multiplying it by the moment 
acting on it and by the angle of rotation attributable to that region. The total energy 
dissipated for the whole slab is the sum of the dissipated energies of all the regions. 
 

                                                       
C The maximum deflection occurring at a point located on the yield line pattern is given an arbitrary displacement which for 
convenience is give the value of unity i.e. one metre. From this all the other displacements anywhere within the slab boundary 
are geometrically uniquely defined and expressed as a fraction of this theoretical one metre.  This does not mean slabs 
deflect one metre! A value of 1 millimetre could be used but it would be less convenient in calculations. The value is 
purely arbitrary and does not really matter as δmax cancels out with the fraction of δmax on the other side of the equation. 
D It can be seen that the resultant unit for the moment ‘m’ acting on a yield line is ‘kN’. This is because the moment is always 
considered acting over one metre length of yield line.  
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Diagonal yield lines are assumed to be made up of small steps with sides parallel to the 
axes of rotation of the two regions it divides. The 'length' of a diagonal or inclined yield 
line is taken as the summation of the projected lengths of these individual steps onto the 
relevant axes of rotation. 
 
The angle of rotation of a region is assumed to be small and is expressed as being 
δmax/length. The length is measured perpendicular to the axis of rotation to the point of 
maximum deflection of that region. 
 

2.2.4  E = D 
A fundamental principle of physics is that energy cannot be created or destroyed. So in 
the yield line mechanism, E = D. By equating these two energies the value of the 
unknown i.e. either the moment, m, or the load, N, can then be established. 
 
If deemed necessary, several iterations may be required to find the maximum value of m 
(or the minimum value of load capacity) for each chosen failure pattern. 
 

2.2.5  The principles 
To illustrate the principles, two straightforward examples are presented. 
 
Consider a one-way slab simply supported on two opposite sides, span, L and width w, 
supporting a uniformly distributed load of n kN/m2. 
 

 

Figure 2.1 A simply supported one-way slab 
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Here, the length of the projected yield line, ‘l’, onto the axis of rotation is w. Also θ, 
equates to δmax/(L/2).  
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Therefore: 

max max2nLw
x 2mw L2 2 2

δ δ
= ×  

 

Cancelling gives:   
2nL 4m
4 L

=  

Rearranging 
gives: 

   m = nL2/8 

 
Which is rather familiar! 
 
The same principles apply to two-way spanning slabs. Consider a square slab simply 
supported on four sides. Increasing load will firstly induce hairline cracking on the soffit, 
then large cracks will form culminating in the yield lines shown in Figure 2.2.  
 

 

Figure 2.2  Simply supported slab yield line pattern 

Diagonal cracks are treated as stepped cracks, with the yield lines projected 
onto parallel axes of rotations 

 

Assuming the slab measures L x L and carries a load of n kN/m2: 
 

max max
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In this case the length of the projected yield line, l,  for each region measured parallel to 
the axis of rotation = L 
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2.2.6  Rules for yield line patterns 
There are rules to be observed when postulating a yield line pattern. As given in Table 1.2, 
they are as follows: 

1. Axes of rotation generally lie along lines of support and pass over any columns.  

2. Yield lines are straight. 

3. Yield lines between adjacent rigid regions must pass through the point of 
intersection of the axes of rotation of those regions. 

4. Yield lines must end at a slab boundary.  

5. Continuous supports repel and a simple supports attract yield lines 
 
Once a yield line pattern has been postulated it is only necessary to specify the deflection 
at one point (usually the point of maximum deflection) from which all other rotations can 
be found. 
 
These rules are illustrated in Figures 2.3 and 2.4. 
 

 

Figure 2.3 Valid patterns for a two-way slab 

 
Figure 2.3 shows a slab with one continuous edge (along 3-4) and simply supported on 
the other three sides. The figure shows three variations of a valid yield line pattern. 
Successive applications of the Work method would establish which of the three would 
produce the most unfavourable result.  
 
In this pattern, line 5-6 would be given unit deflection and this would then define the 
rotations of all the regions.  
 
On the basis that a continuous support repels and a simple support attracts yield lines, 
layout III is most likely to be closest to the correct solution. As region C has a continuous 
support (whereas region B has not), line 5-6, must be closer to support 1-2 than support 
to 3-4.  
 
It is always important to ensure that Rule 3 (Yield lines between adjacent rigid regions 
must pass through the point of intersection of the axes of rotation of those regions) is 
observed in establishing a valid pattern. For the case under consideration, line 1-5, for 
instance, passes through the intersection of the axes of rotation of the adjacent regions A 
& B. Similarly line 2-6 passes through the intersection of the axes of rotation of adjacent 
regions B and D. Likewise line 5-6 in Figure 2.3: this line intersects the axes of rotation of 
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adjoining regions B & C at infinity, i.e. line 5–6 is parallel to the axes of rotation. This is 
clearly not the case in Figure 2.4 and so the pattern in Figure 2.4 is incorrect.  

 

 

Figure 2.4 Invalid pattern for the two-way slab above 

 
Figures 2.5 and 2.6 show the correct and incorrect application of Rule 3 to a slab 
supported on two adjacent edges and a column. 
 

 

Figure 2.5  Valid patterns for a slab supported on two adjacent edges and a column.  
The rules for yield line patterns apply to columns as well as wall supports.  As 
illustrated by lines 1-2 and 1’-2’, appropriate axes of rotation for maximum moment, m, 
might not be quite so obvious, but it is rarely necessary to be exactly accurate.  In the 
detailed analysis of slabs on walls and columns, it is usual to take axes of rotation on 
the faces of supports. 

 

 

Figure 2.6  An invalid pattern 
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2.2.7  General simplification 
In any yield line pattern there is an assumed point of maximum deflection δmax, and this is 
always assigned the value of unity i.e. δmax = 1. In the case of a rectangular slab δmax, 
may extend along a central yield line. Generally, the maximum deflection is the same for 
all the regions of a slab (i.e. δmax region  = δmax = 1). Thus, when calculating the Expended 
external energy, E, the displacement of the resultant of each load acting on a region can 
be simply expressed as a factor of L1/L2 where: 
 

L1 is the perpendicular distance of the resultant force from the axis of rotation of 
the region 

L2 is the perpendicular distance to the location of δmax from the axis of rotation 
of the region 

 

 

Figure 2.7 Lengths L1 and L2 

 
The axis of rotation of the region usually coincides with the supported edge. Whereas L2 is 
a constant value for all loads on a region, the distance L1 will depend on the location of 
the centroid of the loads acting within that region. This leads to the following values of 
L1/L2 when dealing with uniformly distributed loads: 
 

½ for all rectangular regions 

1/3 for all triangular regions with apex at point of max. deflection 

2/3 for all triangular regions with apex on the axis of rotation  
 
In carrying out the calculations for expenditure of external energy, E, the loads for all the 
triangular areas can be expressed as a single total load, rather than working out each load 
separately, as they all have equal displacement. In a similar way, all rectangular areas will 
have equal displacement. 
 
For dissipated internal energy, D, once a yield line pattern has been postulated, it is only 
necessary to specify the deflection of one point (usually the point of maximum deflection) 
from which all rotations can be determined. Thus a factor of 1/L2 is used to determine θi, 

where: 
 

 θi, is the rotation of the region about its axis of rotation 

L2 as before, is the distance normal from the axis of rotation (or supported 
edge) to the location of δmax of that region. This distance can vary for each 
region. 
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2.2.8  Angled yield lines  
Yield lines that divide regions at an angle to the reinforcement are, for the purpose of 
analysis, considered as yield lines in small steps at right angles to the reinforcement: for 
convenience the angled yield line is resolved in two directions. Thus a diagonal yield line is 
considered as being projected in two directions onto the axes of rotation of the two 
regions being divided. These projected lengths form parts of the overall yield line lengths 
(also see Figure 2.11). 
 

 

 

Figure 2.8  Dealing with angled yield lines 

 
 

2.2.9  Design procedure 
When applying the Work Method the calculations for the expenditure of external loads 
and the dissipation of energy within the yield lines are carried out independently.  The 
results are then made equal to each other and from the resulting equation the unknown, 
be it the ultimate moment ‘m’ generated in the yield lines or the ultimate failure load ‘n’ of 
the slab, evaluated. 
 

Calculating expenditure of energy of external loads: E 

Having chosen a layout of yield lines forming a valid failure pattern, the slab is divided 
into rigid regions that rotate about their respective axes of rotation along the support 
lines. If we give the point of maximum deflection a value of unity then the vertical 
displacement of any point in the regions is thereby defined. The expenditure of external 
loads is evaluated by taking all external loads on each region, finding the centre of gravity 
of each resultant load and multiplying it by the distance it travels. 
 
In mathematical terms:   E = Σ (N ×δ ) for all regions 

 
The principles are illustrated in Figure 2.9. Having chosen a valid pattern and layout the 
points of application of all resultant loads are identified. Points 1-8 are the points of 
application of the resultant of the uniformly distributed loads in the individual regions 
bounded by the yield lines. Point ‘P’ is the point of application of the point load P.  
 

m
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Figure 2.9  Principles of expenditure of external loads: E 

In the shaded triangular areas the resultant of the udl (i.e. the point of 
application)  lies one third of the distance from the line of support towards 
the line of maximum deflection, e-f. Similarly the resultant for the unshaded 
rectangular areas lies half way between the lines of support and line e-f. As 
the maximum deflection of the slab is given the value of unity the vertical 
displacement of all the resultant loads at their respective locations can be 
uniquely defined. 
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Calculating dissipation of energy within the yield lines: D   

The dissipation of energy is quantified by projecting all the yield lines around a region 
onto, and at right angles to, that region’s axis of rotation. These projected lengths are 
multiplied by the moment acting on each length and by the angle of rotation of the 
region.  At the small angles considered, the angle of rotation is equated to the tangent of 
the angle produced by the deflection of the region. The sense of the rotations is 
immaterial. 
 
In mathematical terms:    D= Σ (m× l× θ) for all regions 
 
Figure 2.10 (see over) is a graphical presentation of the terms involved in the dissipation 
of internal energy along the yield lines, (assuming an isotropic layout of reinforcement). 
In region D, for instance, the projection of the positive (sagging) yield line of value ‘m’ 
surrounding that region a-b-e onto its axis of rotation, a-b, has the length a-b, shown as 
length ‘Lx’. Similarly the yield lines d-f-c around region A are projected onto d-c and has 
the length of ‘Lx’. 
 
In region C, the projection of the positive (sagging) yield line of value ‘m’ surrounding that 
region b-e-f-c onto its axis of rotation, b-c, has the length b-c, shown as length ‘Ly’. This 
side also has continuous support and a negative (hogging) yield line, of value m’, that 
forms along the support. As this yield line already lies on the axis of rotation, it has a 
projected length equal to the length of the side b-c, again shown as length ‘Ly’. The angle 
of rotation of region C affecting both these moments is shown in section 1-1. It will be 
seen that, by definition, the angle of rotation ,φc, equals 1/hC. A similar procedure is 
applied to the other regions. 
 
The yield lines a-e-f-d around region B would be projected onto a-d. In this case as it is a 
simple support no negative moment would develop at the support.  
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Figure 2.10  Principles of dissipation of internal energy, D 
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     2.2 The Work Method: Example 2A

Example 2A  
Two-way slab using the Work Method (simple yield pattern) 

Using the Work Method, analyse and design a 250 mm thick reinforced concrete slab spanning 9.0 x 7.5 m. The slab 
occupies a corner bay of a floor, which has columns at each corner connected by stiff beams in each direction. The slab 
can be regarded as being continuous over two adjacent sides and simply supported on the other two. Assume isotropic 
reinforcement with equal ‘m’ in each direction.  Allow for a total ultimate load of 20 kN/m2. Concrete is C40, cover 20 
mm T&B. 
 
Determine the effect of an additional ultimate line load of 20 kN/m located at the middle of the shorter span. 
 

Slab layout 
 

Work method applied: 

a) First establish the value of m omitting the line load.  
Let all yield lines bisect the corners at 45o  

 

 

 

 

 

 Expenditure of energy by the external loads 
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EE =             (N ) =× δ∑  

2

2

2

120 kN/m 7.5 7.5 375.03
120 kN/m 1.5 7.5 112.5
120 kN/m 1.5 7.
2

5 2

= × × × =

=
= ×

× =
× ×
× ×

220 kN/m 1.5 4 .57.5 87∑ == × ×  

 

                                           E = 487.5 kNm/m 
 

. 
 Dissipation of internal energy in the yield lines  

D = ( )m l :∑ × × θ  

i.e:  

 

 
D =  A:{    

1m 7.5 2m3.75
1m 7.5 2m3.75

× × =

′× × =
          as m′ = m 

B:      1m 9.0 2.4m3.75× × =   

C : { 1m 9.0 2.4m3.75
1m 9.0 2. 4m3.75

× × =

′× × =
        as m′ = m 

 D:        1m 7.5 2.0m3.75× × =
=

13.2m∑ =

 

D = 13.2m kNm  

 

 
 

                                                       
E In carrying out the calculations for expenditure of external energy, E, the loads for all the triangular regions can be 
expressed as a single total load, rather than working out each load separately, as they all have the same displacement of 
1/3 δmax. Similarly, rectangular regions have the same displacement of ½ δmax.   
 

[regions A and D and parts of B and C]

[parts of regions B and C]

ϕ 

m'

3.75

3.75

7.5

m

'
δ = 1

 m

B

C

D

3.75 3.75

9.0

m'

m' m

m m

m

φ Dφ A

φ DA

m ' = m

ϕ 

B

C
C

B

φ 

φ 

ϕ 

δmax = δ = 1.0

i.e.      chosen as 1.0m'
m

A

m  



 

 35

     2.2 The Work Method: Example 2A

3.75
1.5

3.75

1/2
1/2

20 kN/m

1

 
 

 From the equality of energies exerted we have: D = E 

i.e.   m x 13.2 = 487.5  

m = 487.5/13.2 = 36.9 kNm/m 

m′ = 36.9 kNm/m 

 

b) Now we will add the line load of 20 kN/m 
parallel to the longer side with crack 
pattern of a).  The worst case is 
where the line load is over the yield 
line (otherwise expended energy 
would be less) viz:  
 

 

 To 'E' of 487.5 we add: 

 

120 kN/m 7.5 752
20 kN/m 1.5 1 30

× × =

× × =
=

105∑ =

 

i.e. E = 487.5 + 105 = 592.5 
E = 592.5 

 

 'D' is the same as before:   
D = 13.2m 

 

 From D = E we get: 13.2m = 592.5 

m = 592.5 / 13.2 = 44.89 kNm/m = m′ 

 

  
Thus the partition line increases m from 36.9 to 44.89 kNm/mF 

 

 

 
 

                                                       
F Had the line load been a fixed partition in the span, then actual positional dimensions could have been used, but with 
little increase in accuracy 



The work method of analysis 

 36

Practical Yield Line Design     2.2 The Work Method: Example 2B 

Example 2B  
Two-way slab using the Work Method  (precise yield pattern) 

Re-analyse Example 2A using the dimensioned layout of yield lines determined in Example 3D (by using formulae for 
this same slab).  As before, allow for an ultimate uniformly distributed load of 20 kN/m2  
 

Slab layout -      dimensions of the yield lines determined in Example 3D: 
 

 

m′ = m 

 

 
E  = 2

2

120 kN/m 8.16 7.5 4083
120 kN/m 0.84 7.5 632

× × × =

× × × =
=

471∑ =

 

E = 471   

 

 
D =  A:{    

1m 7.5 1.57 m4.78
1m 7.5 1.57 m4.78

× × =

′× × =
          as m′ = m 

B:         1m 9.0 2.89m3.11× × =   

C : { 1m 9.0 2.05m4.39
1m 9.0 2.05m4.39

× × =

′× × =
        as m′ = m 

D:        1m 7.5 2.22m3.38× × =
=

12.35m∑ =

 

D = 12.35m 

 

 From D = E we get 12.35 m = 471 
m = 471/12.35 = 38.14 kNm/m 

m′ = 38.14 

 

m
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2.2.12  A question of accuracy 
The same 9.0 x 7.5 m slab has been analysed in two different ways.  It is also analysed in 
Example 3D.  The results of the three analyses are as follows: 
 

Table 2.1 Comparison of yield line methods 

Value of m (kNm/m) 

Example udl udl + line 
load 

Comments 

Example 2A 36.93 44.89 
Work Method – simple layout of 
yield lines  

Example 2B 38.14  Work Method - exact 

Example 3D 38.18 46.26 Formulae - exact 

 
In Example 2A, a layout was chosen which had all the yield lines bisecting the corners at 
45 degrees.  This made the calculation of Dissipation of Energy very quick and easy as all 
the regions had the same angle of rotation.  
 
However, there is a marked difference between this layout and the theoretically correct 
one as determined by Example 3D and explored in Example 2B. Yet the calculated 
moment of 36.93 kNm/m in Example 2A compared to 38.14 kNm/m in Example 2B is only 
3% too low.  Likewise, when the line load was added in Example 2A the resulting moment 
of 44.89 kNm/m compares to 46.26 kNm/m calculated in example 3D. This shows the 
same 3% difference. Example 2B was undertaken to show that the Work Method, when 
applied to patterns known to be correct, does produce the same answers (apart from 
rounding errors!).  
 
These results clearly demonstrate that very good results can be achieved with 
simple approximate layouts. 
 
In practice, it is common to accept that there will be some inaccuracy when using simple 
layouts but compensate by adding 10% to the moment or reinforcement to that required 
by design - as provided for by applying the ‘10% rule’ (see 1.2.12). 
 
These examples assumed the same reinforcement and cover top, over supports, and   
bottom in the span, i.e. m = m’. Providing the ratio of m to m’ is within reasonable limits 
(say 0.5 to 2.0), the designer may choose to use ratios other than 1.0 for span to support 
moments.  
 
These examples assumed isotropic bottom reinforcement, i.e. that mx = my,: in other 
words, equal ‘m’ in each direction.  The next section deals with slabs where the designer 
chooses to use different amounts of reinforcement in the two directions, i.e. orthotropic 
slabs. 
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2.3 Orthotropic slabs 
2.3.1  Introduction 

So far we have been dealing solely with slabs that have had the same amount of bottom 
reinforcement in each direction at right angles to each other. These isotropic slabs are 
analysed to give the same ultimate positive moments, m, in each direction. In this respect 
the slight variation in their resistance moments that would result from the differing 
effective depths is ignored.  
In the case of rectangular slabs where there is a marked difference between the two 
spans it is obviously more economical to span in the short direction and therefore put 
more reinforcement in the short direction. It is usual therefore to allow a greater moment, 
m, to develop in the shorter span and a lesser moment, µm in the longer span. This then 
becomes an orthotropic slab. µ is the ratio of the moment capacity in the weaker direction 
to the moment capacity in the stronger direction. It has a value <1. The actual value 
depends on the designer’s choice for the ratio of the two moments or, more usually, the 
ratio of the reinforcement areas in the two directions. At the relatively low levels of 
moments generally encountered in slabs, the premise that moment capacity is directly 
proportional to area of reinforcement is valid.   
 
Conventionally, key lines are added to diagrams of orthotropic slabs to indicate the 
relative capacity of the slab in each direction. Key lines may be regarded as short sections 
of yield line and are therefore perpendicular to the relevant reinforcement. 
 

 

Figure 2.11  Slab with orthotropic reinforcement 

 
Orthotropic slabs can be analysed from first principles using the Work method following 
the same procedures as outlined in Section 3. However, when carrying out the dissipation 
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of internal energy along the yield lines, we work with the value µm × l × θ for the internal 
energy dissipated by yield lines rotating about the relevant axis of rotation. In other 
words, µm replaces m for the reinforcement in this direction. 
 
Analysing orthotropically reinforced slabs from first principles can become somewhat 
tedious and difficult. This is especially so for slabs with complex shapes and support 
configurations or slabs subjected to dominant point loads or line loads. These types of 
slabs are much more easy to analyse when they are assumed to be isotropically 
reinforced. 
  

2.3.2  Affine Transformations 

The process that allows an orthotropic slab to be analysed as an equivalent isotropic slab 
is called Affine Transformation. When solved, an Affine Transformation produces a 
moment, m, of the same value as that of the original orthotropic slab.  
 
The technique is also very useful for solving slabs where formulae exist only for the 
isotropic case. 
 

2.3.3  The rules of Affine Transformation 
The rules for converting an orthotropic slab to an equivalent isotropic slab for the purpose 
of determining the ultimate moment, m, are as follows: 
 

1 All distances in the direction of the µm reinforcement (usually the long 
direction) in the converted Affine slab are obtained by dividing corresponding 
lengths in the original orthotropic slab by √µ 

2 
 

Total loads in the converted Affine slab are obtained by dividing the total loads 
in the original corresponding orthotropic slab by √µ 

 
These rules are shown graphically in Table 2.2. 

 
We use this transformation in order to compute the value of m in the transformed 
equivalent isotropic slab. The value of m derived for the isotropic slab applies also to the 
original orthotropic slab. To get the value of µm in the orthotropic slab, we multiply the 
value of m by µ.  
 
Any distances in the direction of the µm reinforcement taken from the isotropic slab will 
have to be multiplied by √µ to arrive at the correct distance in the original orthotropic 
slab.  
 
For design purposes, it is recommended that the ‘10% rule’ is applied in the normal way 
to allow for inaccuracies and corner levers. 
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Table 2.2 Rules for transforming orthotropic slabs to isotropic slabs for the purpose of analysis 

Case Orthotropic slab Equivalent isotropic slab, 

 with µ < 1 i.e. converted affine slab 

1) udl’s and point loads     n kN/m2 + P kN  

 

 

 

2) Line load Pb kN/m 

 

 

 
 

3) Line load Pa kN/m 

 

 

 

4) Skew line load ps kN/m 
 

 

 

NB: n and Pb are not divided by µ -  consider rule 2 in relation to the dimensions of the converted Affine slab. 
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 2.3 Orthotropic Slabs: Example 2C

Example 2C 
Two-way slab using the Work Method (orthotropic slab) 

Analyse the slab of example 2A (2B and 3D) again from first principles firstly using the Work Method. Use a ratio of 0.5 for 
the longitudinal to transverse steel and use a simplified yield line pattern with 45o angles for the inclined yield lines. Secondly, 
analyse the same slab (again with µ= 0.5) using an Affine Transformation. In both cases, allow for an ultimate uniformly 
distributed load 20 kN/m2 and an additional ultimate line load of 20 kN/m located at the middle of the shorter span. 
 

Slab Layout 

 

 

Part 1 Analysis using the Work method 

   

 E = triangular areas

rectangular areas

partition: ends

partition: centr
=

e

2

2

120kN/m 7.5 375.03
120kN/m 7.5 112.52
120kN/m 7.5 75.02

20kN/m .5 1 30.0

× × 7.5× =

×1.5× × =

× × =

×1 × =

592.5∑ =

  

 D = 13 0.5m 7.5 3.0m3.75
13 9.0 7.2m3.75

× × × =

× × =
=

10.2∑ =

 as m1’ = 0.5m, and 3 yield lines G 

as m2’ = m 

 From D = E we get: 10.2 m= 592.5 

592.5/10.2 = 58.09 kNm/m 

 

 
 

µm = 0.5 x 58.09 = 29.045 

iiµm  = m’1= 0.5 x 58.09 = 29.045 

i2m = m’2 = 58.09 

 

                                                       
G One negative yield line at the continuous support and two positive yield lines in the span. 

Line load 20 kN/m

n = 20 kN/m2
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Part 2 Analysis using affine transformation 

  

 
 
 

 
 
 
 
 
 
 
 
 

 

 

 
 

N.B Following the affine transformation,  
moment = m in both directions 

E = triangular areas

rectangular areas

partition: ends

partition: centre
=

2

2

120kN/m 10.6 7.5 530.03
120kN/m 2.13 7.5 159.82
120kN/m 10.6 106.02

20kN/m 2.13 42.6

× × × =

× × × =

× × =

× ×1 =

838.4∑ =

 

 

 D = 13 m 7.5 4.25m5.3
13 m 12.73 10.28m3.75

× × × =

× × × =
=

14.43∑ =

  

 From D = E we get: 14.43m = 838.4 

m = 838.4 / 14.43 = 58.09 kNm/m 

 

Converting back   

  

 
 

 
 
 
 

 

 NB 12.73 x √0.5 = 9.0 

m= 58.09 kNm 

µm = 0.5 x 58.09 = 29.05 [kNm/m]  

m′1= i1 µm = 0.5 x 58.09 = 29.05 kNm/m   asi1 = 1 

m′2 = i2m = 58.09 kNm/m asi2 = 1 

 

 

 

3.75

3.75
7.5

m

µmm'1

m'23.753.75 1.5

9.0

20 (kN/m)  

i4 = 0

i3 = 0
i1 = 1

i2 = 1

m

m

m'2

m'1
3.75

3.75

7.5

1.5/  0.5
3.75/  0.5 = 5.3 5.3= 2.13 n = 20 kN/m2

m'1 = m
m'2 = m

9.0/   0.5 = 12.73
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 2.3 Orthotropic Slabs: Example 2C

Comments on calculations 

As can be seen from this example the Work Method applied to the original slab gives the same answers as the one 
applied to the transformed slab. More details are given in reference 14. As mentioned earlier, there will be cases where 
the transformation technique will be the only method available to provide a workable solution.  
 
For design purposes, it would be usual to apply the ‘10% rule’ to allow for the effects of corner levers, and yield line 
being an upper bound solution. 
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3.0 Standard formulae for slabs 
This Chapter deals with standard formulae that may be used for yield line solutions for 
common types of slab. It may be regarded as a quick reference for common solutions. 
The formulae cover varying support and loading arrangements and have been taken from 
the solutions given by K. W. Johansen [5, 6] in his works. 
 
So far in this publication it has generally been assumed that support moments equal span 
moments. However, formulae give the designer a wide choice for the size of support 
moments. This is done by using ‘ i ‘ factors which are chosen to reflect the kind of 
restraint offered by the support expressed in terms of the ratio of the support moment to 
mid-span moments. The values commonly attributed to these ‘ i ‘ factors or fixity ratios 
are 0 for a simple support, giving no resistance to rotation, up to anything between 1 and 
2 usually dependant on the rotational resistance offered by the continuing slab in the 
adjoining bay. The values of ‘i’ should to some extent reflect the elastic continuity in order 
to limit problems in the serviceability state.  
 
Design codes of practice limit the amount of redistribution of moments that may take 
place in the design of a section. Clause 3.2.2.1 of BS 8110 requires that the resistance 
moment at any section should be at least 70% of the moment at that section obtained 
from an elastic analysis covering all load combinations. (Similar and other requirements 
apply in prEN 1992-1-1 [3].) Whilst it may be thought imperative to check the moments 
determined from a yield line analysis against those for an elastic analysis, there is rarely a 
problem and unless extreme values of ‘i’ are used, such calculations are unwarranted in 
the majority of cases (see Example 3C).  
 
The failure patterns produced by the yield lines in slabs depend on the nature of both the 
loading and support conditions. They may be very simple, as in the case of a simply 
supported one-way spanning slab, or may be more complex when the slab has a 
combination of loads on an irregular support arrangement. The intention in this publication 
is to provide formulae for the more common one-way and two-way slabs on regular 
supports. The more complicated arrangements are dealt with in standard texts [2, 6]. 
 
One of the great benefits of yield line analysis is that, as opposed to elastic analysis, the 
designer may choose how moments are distributed between individual spans, bays or 
sections.  This is a distinct advantage, for instance, in refurbishment where the resistance 
moment of an existing slab is predetermined. 
 
The formulae are not subject to the restrictions of BS 8110 cl 3.5.2.3 with respect to 
loads, spans, etc.  The designer should none the less be wary of the need to check 
curtailment and possible hogging in spans. 
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3.1 One-way spanning slabs 
3.1.1  General 

The general form of the formulae for one-way spanning slabs supporting uniformly 
distributed loads is as follows [2, 6]. 
 

( )
2

2
1 2

nL
m

2 1 i 1 i
=

+ + +
 

 
where 
m ultimate moment along the yield line [kNm/m]  
n  ultimate load [kN/m2] 
L span [m]  
i1 , i2 ratios of support to mid-span moments, the values of which are chosen by the 

designer: i1= m’1/m, i2= m’2/m    
 
A proof is given in the Appendix, but by way of explanation, Figures 3.1 to 3.3 consider a 
simply supported one-way slab with a uniformly distributed load.  
 
 

 

Figure 3.1  One-way spanning slab 

 
 

 

Figure 3.2  Axonometric view of a simply supported one-way spanning slab 

 
 

n (kN/m2)

m'1  (kNm/m) m'2  (kNm/m)

i1 = m'1 /m i2 = m'2 /m
m

L 

m (kNm/m)

Deflected shape at failure

Uniformly distributed load
throughout n [kN/m2] Original slab plane

prior to failure

SPAN L 

Simple
 su

ppo
rt

Simple
 su

ppo
rt

Any 
len

gt
h

AA

Yield  line formed at failure 
with ultimate moment
m [kNm/m]
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Figure 3.3  Loading, hinge locations and bending moment diagram for simply supported slab 

 
Using the general formula and i1 = i2 = 0:         (i1= m’1/m = 0 and  i2= m’2/m = 0)   
 

( ) ( )

( )

2 2

2 2
1 2

2 2

2

nL nL
m

2 1 i 1 i 2 1 0 1 0

nL nL
m kNm/m

2 2 8

= =
+ + + + + +

= =

 

 
So the plastic ultimate moment along the yield line is nL2/8, which we know is correct! 
 

3.1.2. Design formulae 
The formulae to establish the value of the maximum midspan moment ‘m’ for any span 
within a continuous slab are given in Table 3.1. Cases 2, 3 and 4 are variations on the 
base formula for case 1.  
 
The formulae in Table 3.1 enable the designer to choose a set of values for the negative 
and positive ultimate moments in each bay of a continuous slab for the maximum design 
ultimate load ‘n’. This is carried out on the assumption that all spans are loaded with the 
ultimate load ‘n’. This is also the recommendation of clause 3.5.2.3 of BS 8110, but is 
subject to the restrictions that  

 pk / gk  <1.25,  
 pk (excluding partitions) < 5 kN/m2 and  
 the bay areas exceed 30 m2.  

 
With Yield Line Theory these restrictions do not apply as there are ways of investigating 
the effect that pattern loading has on the design ultimate moments chosen for any span. 
Tables 3.3 and 3.4 describe this procedure. 
 
Please note that in Table 3.1 opposite: 
• In cases 1 & 2 the ratio of support moments to midspan moments have been fixed 
• In cases 3 & 4 the magnitude of the support moments have been fixed  
• In cases 5 & 6 the ratio of one support moment to midspan moment and the 

magnitude of the other support moment have been fixed. 
 
 

Elastic bending moment diagram with maximum 
ultimate moment in location where yield line will form

m

Plastic (ultimate) moment
m along yield line

m

i1 i2

L 

U.D.L.  n kN/m2

SECTION A-A

m'1 = 0 m'2 = 0
m

i.e. i1 = i2 = 0
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Table 3.1  Formulae for one-way slabs - to establish midspan yield line moment ‘m’ in a 
span of a continuous slab 

 

Case Diagram Formula 

1 

 
( )

2

2
1 2

nL
m

2 1 i 1 i
=

+ + +
 

2 

 
( )

2

2
2

nL
m

2 1 1 i
=

+ +
 

3 

 2
2 1 2

1 2 2

(m m )
nL 4 m m

nL
m

8

′ ′ −′ ′− + − 
 

=  

4 

 2
2 2

2 2

(m )
nL 4 m

nL
m

8

′ 
′− − 

 
=  

5 

 

( )

2
2 2

2 2

1 1

(m )
nL 4 m

nL
m

4 1 0.5i 1 i

′ 
′− − 

 =
+ + +

   

6 

 

( )

2
2 1

1 2

2 2

(m )
nL 4 m

nL
m

4 1 0.5i 1 i

′ ′− − 
 

=
+ + +

    

Approx. 

These formulae 
can err 5 – 10% 
on the high side, 
especially when 
there is a large 
difference 
between the end 
moments 

Where 
m is the ultimate moment along the yield line [kNm/m] 
n  is the ultimate load per unit area [kN/m2]                                                  
L is the span, either centreline-to-centreline, or with integral supports, clear span [m]  
i1 , i2 are the ratios of support to midspan moments, whose values are chosen by 

the designer 
m′1, m′2  are the support moments - the values of which are chosen by the designer. 

The values could be established from analysis carried out on an adjacent bay 
[kNm/m] 

n (kN/m2)

m'1  (kNm/m) m'2  (kNm/m)

i1 = m'1 /m i2 = m'2 /m
m

L 

m (kNm/m)

m

i1 i2

m

i1 = 0 i2

m

m'1 m'2

m

m'2m'1 = 0

m

i1 m'2

m

i2m'1
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3.1.3  Location of maximum midspan moments and points of contraflexure  
Table 3.2 presents expressions for the location of maximum midspan moments and points 
of contraflexure. The parameters s1 and s2, the location of the points of contraflexure, are 
needed when checking the extent of top steel in accordance with BS 8110 clause 3.2.2.1 
condition 3 which states: “Resistance moment at any section should be at least 70% of 
moment at that section obtained from an elastic maximum moments diagram covering all 
appropriate combinations of design ultimate load.”  
 

Table 3.2  Location of maximum midspan moments and points of contraflexure 

 

          1
1

1 2

1 i
x L

1 i 1 i
+

=
+ + +

 2
2

1 2

1 i
x L

1 i 1 i

+
=

+ + +
 

          1
1

1 2

1 i 1
s L

1 i 1 i

+ −
=

+ + +
 2

2
1 2

1 i 1
s L

1 i 1 i

+ −
=

+ + +
 

Where 

x1, x2  are the distances to maximum span moment [m] 

s1, s2  are distances to points of contraflexure, i.e. points of zero moment [m] 

L  span [m] 

i1 , i2  are ratios of support to midspan moments  

m  is the maximum midspan moment [kNm/m] 

m′1 , m′2  are the support moments [kNm/m] 

 

3.1.4  Pattern loading: modes of failure and curtailment of reinforcement 
It is important to check how far to project the support steel into lightly loaded bays to 
ensure that the ultimate design moments at the supports can develop. Tables 3.3 and 3.4 
depict the different modes of failure that could occur in continuous slabs when adjacent 
bays are subject to pattern loading. 
 
In most cases, extending support steel 0.25L into the adjoining span will usually suffice.  
However, if the designer has any doubt, Tables 3.3 and 3.4 may be used to check 
curtailment. 
 
If the curtailed length of top steel is less than the computed length ‘cL’ then the slab in 
this bay will fail by cracking at the top, just at the ends of the top reinforcement and it will 
not be possible for the yielding of the support steel, as assumed in the original design, to 
take place. If the curtailed length of top steel is equal or greater than the computed 
length ‘cL’ then the slab full support moment can develop.  

n (kN/m2)

m
m'2 = i2 mi2i1m'1 = i1 m

s1 s2

x1 x2

L

 =
2 =

m'
m'2m
m

i1
1

i
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The formulae below are based on the premise that the lightly loaded bay will fail in 
hogging only if the negative work expended (to bring this failure pattern about) is less 
than that required to activate the full plastic moment at the support. 

 

End spans 

Table 3.3 gives the formulae for determining the coefficient for the distance from the 
penultimate support at which 100% of support steel may be terminated in the end bay. 
 

Table 3.3 End span curtailment formulae: end span lightly loaded 

 

 2 b
2

2(m m )
c K K

gL
′ ′−

= − −         and   1 ≥ c ≥ 0.25 

Where 
c is the coefficient for the distance from support at which 100% of support 

steel may be terminated. 

K is the a factor having the value: 

 b a
2

m m
K 0.5

gL
′ +

= +              but           
( )b

2

2 m m
K

gL

′ ′−
≥  where 

n is the total ultimate load, 1.4gk  + 1.6 pk [kN/m2] 

g is the characteristic dead load  1.0gk  [kN/m2] 

ma is the moment of resistance at support a (this is a sagging moment) [kNm/m] 

m′ is the moment capacity of slab in hogging at section where support steel is 
terminated [kNm/m] 

m′b is the ultimate support moment at b as previously determined by the 
designer for the load case of design load ‘n’ on all spans [kNm/m] 

L is the span [m] 

 
The minimum curtailment length is cL [m].  
 
If the coefficient c = 1.0 then top support steel must be continuous throughout the span. 
Should c > 1.0 then one or more of the following changes have to be made: 

Reduce the design moment m'b This would entail re-analysing span b-c for 
the case of design load ‘n’ on all spans with 
the new reduced value of m'b 

a

a

a

cL
b

b

b

ma
m'

m'b
c

c

cL

g kN/m2
n kN/m2
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Increase the design value of m' This would entail lapping a certain quantity 
of top steel onto the curtailed support steel 
or making use of the tensile resistance of 
plain concrete. 

Increase the design value of ma Only possible if support ‘a’ is not a simple 
support. 

 

Internal spans 

Table 3.4 gives the formulae for determining the coefficient for the distance from internal 
supports at which 100% of support steel may be terminated in internal bays. 
 

Table 3.4  Internal span curtailment formulae: internal span lightly loaded  

 

b c
2

m m 2mc 0.5 0.25
gL

′ ′ ′+ −= − −         0.50  ≥ c ≥ 0.25 

Where  

c is the coefficient for the distance from support at which 100% of support 
steel may be terminated. 

m′ is the moment capacity of slab in hogging at section where support steel is 
terminated [kNm/m].  

  NB by statics 
2

b cm m gL
m

2 8
′ ′+′ ≥ −  

m′b, m′c ultimate support moments at b and c as previously determined by the 
designer for the load case of design load ‘n’ on all spans  [kNm/m] 

n is the total ultimate load, 1.4gk  + 1.6 pk  [kN/m2] 

g is the characteristic dead load  1.0gk  [kN/m2] 

L is the span [m]  

 
The minimum curtailment length is cL [m]. If the coefficient c > 0.5, then top support 
steel must be continuous throughout the span.  
 

3.1.5  Maximum redistribution of moments 
In order to limit problems in the serviceability state, codes limit the amount of moment 
redistribution that can take place. As stated above, clause 3.2.2.1 of BS 8110 requires 
that the resistance moment at any section should be at least 70% of the moment at that 
section obtained from an elastic analysis covering all load combinations. (Similar and other 
requirements apply in prEN 1992-1-1 [3].) While this is not strictly necessary to comply 
with this requirement when using Yield Line Design, it is advisable to keep within the spirit 

n g
n

a

a

a

b

b

b

c

c

c

d

d

d

L

m'b
m' m'

m'c

cL cL
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of the codes by checking those moments determined from a Yield Line Analysis against 
those for an elastic analysis. 
 
Table 3.5 gives values of elastic moment coefficients that may be used to check the 70% 
level in such circumstances. These coefficients are for continuous slabs having 
approximately equal spans and carrying uniformly distributed loads, all spans loaded, prior 
to any redistribution, and conforming to BS 8110 Cl 3.5.2.3.  (Please note that Table 3.12 
of BS 8110: Part 1 cannot be used for this purpose as the coefficients listed include the 
effect of moment redistribution.) 
 

Table 3.5  Elastic moment coefficients for one-way spanning slabs - of approximately 
equal spans prior to any moment redistribution, all spans loaded 

No. of 
spans 

K 

 

2 

 

3 

 

4 

 

5 

 
>5 

 

 
End and penultimate span and support moments as for 5 spans, centre spans 
and supports can be taken to have ‘K’ values of 0.042 and 0.083 respectively. 

Elastic moments:  me or m’e = K x F x L  [kNm/m] 

Where 

me is the elastic moment at midspan [kNm/m]  

m′e is the elastic moment at support [kNm/m] 

K is the coefficient for midspan or support moments in one-way spanning slabs 
prior to redistribution 

F is the total ultimate load (1.4Gk + 1.6Pk) = nL [kN] 

L is the span [m] 

n is the total ultimate load, 1.4gk + 1.6pk [kN/m2] 

Note: The above coefficients are restricted to the same conditions of use as for  
BS 8110 Clause 3.5.2.3, which allows the single load case of all-spans-loaded to be 
used in design provided: 

 In a one-way spanning slab, the area of each bay exceeds 30 m2 
 pk ≤ 1.25 gk  
 pk ≤ 5.0 kN/m2 

 
 
 

0.07030.0703

n
0.1250

0.080 0.0800.025

n
0.1000 0.1000

0.0772 0.07720.0364 0.0364

n
0.1071 0.0714 0.1071

0.0778 0.0331 0.0459 0.0331 0.0778

n
0.1054 0.10540.0791 0.0791
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3.1.6 Design method 
When designing a continuous multi-bay slab, it is usual to proceed bay-by-bay, 
apportioning moments to the critical sections at supports and in the span where yield lines 
will ultimately be formed. Yield lines will develop roughly in the same locations as the 
maximum elastic moments i.e. at supports and midspan. The support moments are 
usually chosen to be a preferred ratio of support to midspan moment and that does not 
depart too much from the expected elastic distribution of moments. Often a support 
moment will have been already determined in the solution to a previous span and so the 
designer need only choose a ratio for the other support moment. If, however, both 
support moments have already been established then the remaining span moment is 
uniquely defined. To this end Table 3.1 is extremely useful as it deals with any of these 
situations.  The design method is illustrated in the following examples: 
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 3.1 One-way spanning slabs: Example 3A

Example 3A 
One-way slab using formulae (continuous slab) 

Analyse and design a continuous r.c. slab 250 thick, over four 7.5 m spans.  
Allow 1 kN/m2 for additional dead load, 1 kN/m2 for movable partitions and 2.5 kN/m2 for imposed load. Concrete is 
C40, cover 20 mm T&B 
 
Analysis and design. 

Design procedure 
 

 

 

 

 

 
 

Parameters 
 

Slab depth h = 250 mm 

Concrete C40 

Cover 20 mm T&B 

 

Loading Dead load 

250 slab 0.25 x 24  2
k 6.0g kN/m=  

Additional dead load 2
k 1.0 kg N/m=

=
2

kg 7.0 kN/m=

 

Live load 

Superimposed load 2
k 2.5g kN/m=  

Partitions  2
k 1.0 kg N/m=

=
2

kg 3.5 kN/m=

 

Total ultimate load 

n = 1.4 x 7.0 + 1.6 x 3.5 = 15.4 kN/m2 

 

 

 

 

Analysis   

Bay 1 

Span a-b 

 

L1 = 7.5 m 

n = 15.4 kN/m2 

 

 

 

 

 

 See Table 3.1 Case 2, where i1 = ia    i2 = ib  m = m1  

 

BAY 1 BAY 1BAY 2 BAY 2

n = 15.4 kN/m2 C of symmetryL

a b c b a
m'a m'b m2 m'c m2 m'bm1 m1 m'a

L1 = 7.5 L1 = 7.5L2=7.5 L2=7.5

n

a bm1

L1

ia ib
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  as a
a a

1

m
i 0 m 0

m
′

′= = =  

 choose  ib
b b

1

m
i , 1.0

m
′

= = H 

( )

( )

2
1

1 2

b

2

2

nL
m

2 1 1 i

15.4 7.5

2 1 1 1

74.3 kNm/m

=
+ +

×
=

+ +

=

 

b b 1m i m 1 74.3 74.3′ = × = × =  kNm/m 

 m1 = 74.3 kNm/m : m′b =74.3 kNm/m 

 

 

Bay 2I 
Span b-c 

L2 = 7.5 m 
n = 15.4  kN/m2 

 
 

 
See Table 3.1 Case 6, where 1 bm m′ ′=  ;  i2 = ic  ; m = m2 

m′b = 74.3  kNm/m 

c
c c

2

m
i : choose i 1.0

m
′

= =   

 

 
 
 
 
 
 

 

( )

( )

= 51.0 kNm/m

2
2 b
2 b 2

2
2

c c

2
2

2

m
nL 4 m

nL
m

4 1 0.5i 1 i

74.315.4 7.5 4 74.3
15.4 7.5

4 1 0.5 1.0 1 1.0

594.54
11.66

 ′
′− − 

 =
+ + +

 
× − − × =

+ × + +

=

  

c c 2m i m′ = ×  = 1 x 51.0 = 51.0  kNm/m  

m2 = 51.0  kNmmJ  and  m′c = 51.0  kNm/m 

 

                                                       
H Analysis: Bay 1. In an end bay of a continuous slab the ratio of internal support to midspan moment should be 
between 1 to 2.0, depending on the degree of restraint offered by the adjoining bay. In the majority of cases unity will 
be the most appropriate choice for the following reasons: 

It does not depart too much from an elastic distribution of moments which aids the serviceability requirements, and 
It usually results in an increase of the midspan moment, which helps to keep down the span/depth ratios with respect 
to clauses 3.4.6.3 to 7 of BS 8110 by increasing the ‘beta factor’ in equation 8 (in Table 3.10) of BS 8110. 

n
m'b ic

b cm2

L2
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 3.1 One-way spanning slabs: Example 3A

 
 

 By symmetry resulting moment diagram may be drawn:   

 

 

 

Section Design 
Bay 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        m1 = m’b = 74.3 kNm/m  

         d = 250 – 20 – 12/2 = 224 mm 

    fy/γm = 460/1.05 = 438  N/mm2 

   
6

u
2 3 2

cu

74.3 10M
0.037 z 0.95d

bd f 10 224 40
×

= = ∴ =
× ×

 

reqd
74.3

As
0.95 0.224 0.438

=
× ×

 = 797 mm2/m 

Provide T12 @ 125 cc (905 mm2/m) in span a-bK and support b 

Bay 2 m2 = m’c = 51.0  kNm/m 

reqd
51.0

As
0.95 224 0.438

=
× ×

= 547 mm2/m 

Provide T12 @ 200 cc (565 mm2/m) in span b-c and support c 
 

 
 

                                                                                                                                                                         
I Analysis Bay 2. In the internal bay, as the left-hand support moment has already been fixed, the options for choosing 
the magnitude of the other support and midspan moments are numerous. A good starting point is to choose the support 
to midspan ratio for these as unity again and then see if any amendments become necessary. 
J If precise formulae were used, a more exact answer of 47.69 kNm/m would be derived– some 7% below the 
approximate answer of 51 kNm/m obtained using Table 3.1 case 6.  
 
K Section design: In designing the reinforcement in bay 1 the area required is 797 mm2/m. However the nearest 
sensible area of reinforcement is for T12 @ 125 which gives 905 mm2/m. This gives an ultimate moment of resistance of 
84.35 kNm/m, which represents an increase in capacity of 14 % (i.e. 84.35/74.3) just due to the rounding up of steel 
area required. This increase will be of most benefit to reduce deflection. 
 

BAY 1 BAY 2 BAY 2 BAY 1
a ab bc

m1 = 74.3 m1 = 74.3

m2 = 51.0 m2 = 51.0

m'b = 74.3 m'b = 74.3

m'c = 51.0

d = 224

26

26

d = 224 h = 250
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Deflection 
 

The serviceability limit state for deflection will be checked against the span/ 
effective depth ratios as specified in clauses 3.4.6.3 - 3.4.6.6 of BS 8110 L. 

 

Bay 1 
Span a-b 

From BS 8110 cl. 3.4.6.3 Table 3.9 we get basic L
d  = 26 

Applying Cl. 3.4.6.5 we get: 

fs = 2fyAs req / (3 As prov  βb) 

    = 2 x 460 x 797 / (3 x 905 x 1.1) 

    = 245 N/mm2 

Mu/(bd2) = 74.3 / (1000 x 0.2242) =  1.48       

from  Table 3.10 of BS8110, modification factor k1 = 1.36, 

 L
d  required  = 26 x 1.36 = 35.4 

 L
d  provided  = 

7500
224

 = 33.5 

 as 33.5 < 35.4  O.K 

 

Bay 2M 
Span b-c 

( )
( )

s y reqd prov

2

f 2f As / 3 As b

2 460 547 / 3 565 1.2

247 N/mm

= × β

= × × × ×

=

 

Mu/(bd2) = 51.0 / (1000 x 0.2242) =  1.02       

from  Table 3.10 of BS8110, coefficient k1 = 1.55 

i.e.  L/d required = 26 x 1.55 = 40 

 L/d provided = 
7500
224

 = 33.5  

 as 33.5 < 40  O.K. 

 

 

                                                       
L Deflection: In order to check whether the choice of 1.1 and 1.2 for the code beta factor, for the end and internal 
bays respectively, were justified we need to establish the elastic ultimate midspan moments prior to redistribution. 
These factors are given in Table 3.5 and the midspan moments, using the relevant factors from this table, are as 
follows: 

me1 = 0.0772*15.4*7.52 = 66.87 [kNm/m] 
me2 = 0.0364*15.4*7.52 = 31.532 [kNm/m] 

In the end bay the correct ratio would be 74.3/66.87, which is 1.11. In the internal bay the correct ratio would be 
51/31.53, which is 1.62. It can be seen that the choices were justified. In the internal bay the choice of 1.2 in this 
instance was very conservative. So we can see that, even without the increase of steel area, which was essential 
anyway for practical reasons, deflection was not a problem with the adopted ratios for the moments. It must be 
emphasized that the procedure adopted here of calculating the distribution of elastic moments in order to establish the 
exact value of the ‘beta factor’ would not normally be undertaken. 
 
It is the authors’ opinion that, for the majority of cases encountered in practice, the method used here for complying 
with the serviceability limit state is quite adequate. Only when there is serious concern about the effect excessive 
deflection could have on finishes etc. should there be any necessity for a more rigorous approach. 
 
M As before, using Yield Line Theory in the design and analysis of slabs one can, conservatively, use a βb value of 1.1 for 
end spans and 1.2 for internal spans. See previous footnote. 
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Example 3B 
One-way slab, curtailment of reinforcement 

Investigate the effects of pattern loads on curtailment of the top reinforcement design in example 3A.  
 

Pattern loading and curtailment of top reinforcement 

 

 

Although with respect to Clause 3.5.2.3 of BS 8110: Part 1, we do not need 
to investigate the effect of pattern loading as the conditions of pk / gk < 
1.25 and pk < 5 kN/m2 are satisfied, we will look at alternative bay loading 
to investigate curtailment lengths and demonstrate the use of Tables 3.3 
and 3.4. 

 

a) End bay  

 g = 7 kN/m2 

n = 15.4 kN/m2 

 
 
 
ma = 0 

m′ = 0 

 

See footnoteN 

 

 m′b= 74.3  kNm/m … See Analysis of Bay 1, Span a-b  

 as Table 3.3 

b a
2 2

m m 74.3 0
K 0.5 0.5 0.69

gL 7 7.5
′ + +

= + = + =
×

 

But check 

( ) ( )b
22

2 m m 2 74.3 0
K 0.614

7 7.5gL

′ ′− −
≥ = =

×
 

As 0.69 > 0.614  O.K. 

 

 Curtailment: 

( )

( )

b2
2

2
2

2 m m
c K K

gL

2 74.3 0
0.69 0.69 0.376

7 7.5

′ ′−
= − −

−
= − − =

×

 

 

 

                                                       
N Pattern loading: In our case we have attributed the value of zero to the plastic hinge forming at the support ‘a’. This 
would be so if the slab were freely supported,  on, say, a masonry wall. If the slab is poured monolithically with a 
reinforced concrete wall or connected to a row of r.c. columns then this plastic hinge would have a value depending on 
the lesser of the resistance moments of the slab connection and the supporting element. This ultimate moment ma is a 
positive one creating tension in the bottom fibres and is therefore dependant on the amount of bottom steel adequately 
anchored into the support. In the case of a column support this would be related to the effective moment transfer strip 
as described in clause 3.7.4.2 of BS 8110: Part 1. 
 
Hogging moment m’ describes the plastic hinge that forms at the section where the top steel terminates and where 
there is tension in the top fibres. The value of m’ is either related to the area of reinforcement lapped onto the top 
support steel or to the flexural capacity of the unreinforced concrete section given by the cracking moment mcr. 
 
 

g
n

a

b c

L = 7.5

a

b c

ma

m

m' c

cL

m' m'b
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Check: 1.0 > 0.376 > 0.25 – OK. So the extent of top steel into the end 
bay from support b must be at least: 

c x L = 0.376 x 7500 = 2820 mm 

 

b) Internal bay:  
 

 

 

 

 i) Assuming m′  = 0, from Analysis Bay 2, Span b-c 

bm′  = 74.3  kNm/m         cm′  = 51.0  kNm/m 

 

 With reference to Table 3.4, in order to compute ‘c’, first check m’:  
2

b cm m gL
m

2 8
′ ′+′ ≥ −   

we get 

274.3 51.0 7 7.5
m

2 8

62.65 49.22

+ ×′ ≥ −

= −

 

 
m 13.43 kNm/m′ ≥  

 

 

 

 Adding a 193 meshO in the top at midspan - this would give  

m′  = 193 x 0.95 x 0.21 x 0.438 ≈ 17 kNm/m.   

As 17 > 13.43 OK and we get: 

 

 
( )

( )

b c
2

2

m m 2m
c 0.5 0.25

gL

74.3 51.0 2 17
0.5 0.25

7 7.5

0.365

′ ′ ′+ −
= − −

+ − ×
= − −

×

=

 

 

 Strictly, this value of c is valid only if the two support moments are equal 
i.e bm′ . = cm′ .  As this is not the case, we can adjust c (or the curtailment 
of the top steel) as follows: 

 

 

                                                       
O See Ductility in Frequently asked questions 

n g n

a b

c

L = 7.5m

m' m'

a b

c d

m cLcL m

d

m'cm'b
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 b

c

m 74.3
m 51.0

′
=

′
 = 1.46 

 then 

1.46c + c = 2 x 0.365 

2.46c = 0.73   ∴ 
0.73

c 0.297
2.46

= =  

 

 
∴ cc = 0.297 and cb = 1.46 x 0.297 = 0.433 

So beyond support ’b’ the extent is 

0433 x 7500 = 3248mm 

And beyond support 'c' the extent is 

0.297 x 7500 = 2228 mm 
 

 

 

. 

 

 ii) If we wanted to avoid hogging throughout the span and keep m′=0, we 
would have to decrease the support moments bm′  and cm′  so that 

b cm m
2

′ ′+
 = 49.22.  Say 49.22 kNm/m each, but that option would entail 

redesigning the other spans 

 

 iii) Another alternative would be to attribute a value to the moment of 
resistance of the unreinforced concrete section, m CR P. 

( )

2
r

cr
m

2

Rf h
m kNm/m

6

0.66 0.55 40 250 / 6 1.5 1000

15.9 kNm/m

=
γ

= × × × ×

=

  

 

 
 
 
 
 
 
 

                                                       
P m’ is the plastic hinge capacity which forms at the section where the top steel terminates and creates tension in the top fibres. 
The capacity at this section is either related to the area of reinforcement lapped onto the top support steel or to the flexural 
capacity of the unreinforced concrete section. This cracking moment mcr  is  dependant on the flexural tensile strength of the 
concrete which is given by the expression  fr =0.55√fcu.  [N/mm2]. In order to allow for the effects of shrinkage, temperature etc. a 
reduction factor ‘R’ has been applied to the tensile strength.  The actual value to be attributed to this factor is a matter of opinion 
and in this instance a 40 % reduction was considered appropriate. See Appendix. 
 

b c

7.5

2.2283.248

Steel for m'b
A 193 mesh

Steel for m'c
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 iii) contd Where  
mCR is the moment of resistance of the unreinforced concrete section. 
R is the reduction factor = say 0.66 

fr  is the long-term tensile strength of concrete  = 0.55 cuf  N/mm2 

h is the slab depth mm.  

But let  crm m 15.9 kNm/m′ = =  

This, not unreasonable, assumption gives 

( )
2

74.3 51 2 15.9
c 0.5 0.25

7 7.5
+ − ×

= − −
×

= 0.388 

as before  

1.46c c 2 0.388

2.46c 0.776

+ = ×

=
  

∴ c =
0.776
2.46

 = 0.315 

and    1.46 x 0.315  = 0.460 

∴  cc = 0.315 and cb = 0.460  

Beyond 'b' the extent of reinforcement required is 

 
        0.460 x 7500 = 3450 mm 
 
and beyond 'c' the extent is 
 
             0.315 x 7500 = 2363, say 2400 mm 
 

 

 
 
Commentary on calculations 

In practice Example 3A and 3B would reduce to a couple of pages of hand calculations. 
 
In this example knife-edge support widths are assumed, as would be the case of masonry wall supports, and centreline-
to-centreline span are used. If, however, integral rc wall supports were used then clear spans, face-to-face of wall could 
have been used. Yield lines occur at the faces of integral walls or columns. In this case, it is safer to assume that the 
yield line occurs at the center of the masonry wall. 
 
In the calculation for curtailment length, it was found that the cut-off point for the top reinforcement in the end bay was 
0.376 of the end span measured from the internal support. This assumed m’ = 0. However in the internal bay, we found 
that to avoid hogging throughout the span, i.e to maintain m’ = 0, would have involved reducing the size of the support 
moments m’b and m’c and recalculating span moments. This could have done been done using cases 3 and 4 in Table 3.1. 
 
Alternatively, m’ could have been assigned a value.  Section i) above used mesh, section iii) relied on the flexural tensile 
capacity of the concrete. 

Steel for m'b Steel for m'c

b c
3.450 2.400

7.5
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There are two schools of thought as to whether top steel (usually mesh) is required in the span of a slab or not. Strictly, 
if the top of the section is always going to be in compression, it is not required. However, many engineers advocate the 
use of mesh in the top of spans for the following reasons: 

• to mitigate against shrinkage cracks,  

• to help deal with temporary construction loading conditions,  

• to improve robustness, especially in fire, 

• to reduce deflection,  

• to mitigate against cracking along construction joints. 
 

ACI 318 [33] says, in effect, that unreinforced sections should not be used where ductility is required.  
 
Nonetheless, most design codes recognise that concrete has some flexural strength. The use of 66% of 0.55√fcu for the 
allowable flexural tensile strength of concrete would appear to be justified. In cases where there is significant restraint, 
designers may choose to use a lower figure or indeed a higher figure where restraint is minimal. Further consideration is 
given to flexural tensile strength in the Appendix. 
 
The investigation of curtailment has shown how the support moments derived from the all-spans-loaded case can be 
justified for the pattern load, i.e. alternate bays loaded, case. 
 



 

 62

Practical Yield Line Design 

Example 3C 
One-way slab using formulae (Check for m > 70% elastic moment) 

Clause 3.2.2.1 of BS 8110 stipulates that the resistance moment at any section should be at least 70% of the moment 
obtained from an elastic analysis covering all combinations. The following calculations are presented to demonstrate 
that there is rarely a problem and such calculations are unwarranted in the majority of cases. 

The moments derived for example 3A will now be checked for compliance with Clauses 3.2.2.1 of BS 8110. It has already 
been shown earlier that the conditions of Clause 3.5.2.3 of BS 8110 were met and that it was therefore only necessary to 
cater for the case of all spans loaded with total load. With this type of load the following factored elastic moments can be 
established from Table 3.5. (To carry out this check unusually accurate values of m’c and m2 will be required.) 

Design procedure 

 

gk = 7.0 kN/m2 , pk = 3.50 kN/m2, n=15.40 kN/m2  

 

Elastic moments (kNm/m) 

 2
be

2
ce

2
2e

2
1e

m 0.1071 15.4 7.5 92.78

m 0.0714 15.4 7.5 61.85

m 0.0364 15.4 7.5 31.53

m 0.0772 15.4 7.5 66.87

′ = × × =

′ = × × =

= × × =

= × × =

 

 

Comparison 
Theory  

Location 

Elastic moment 
(kNm/m) 

Yield Line 
moment 
(kNm/m) 

Yield Line 
moment/ Elastic 
moment 

 

Bay 1 m1e = 66.87 m1 = 74.3 1.11  

Sppt b m1
be = 92.78 m1

b = 74.3 0.80 

Bay 2 m2e = 31.53 m2 = 51.0 
   = 47.69 

1.51 approx 
1.62 exact* 

 

Sppt c m1
ce = 61.85 m1

c = 51.0 
   = 47.69 

0.77 approx 
0.82 exact* 

 

 * from precise formulae - see footnote J to Example 3A  

  

Nowhere are the redistributed moments less than 70% of the 
corresponding Elastic moments. Note that there is no limit by which 
a moment can be increased due to redistribution. 

 

Check hogging moments at the points of contraflexure  

 In order to do this it is necessary to find the distance to the points of 
contraflexure for both the elastic and yield line distribution of moments. 
Formulae for calculating these distances ‘s1’ are given in Table 3.2. 

 

 
1

1
1 2

1 i 1
s L

1 i 1 i
+ −

=
+ + +

 
 

 

BAY 1 BAY 1BAY 2 BAY 2

n = 15.4 kN/m2 C of symmetryL

a b c b a
m'a m'b m2 m'c m2 m'bm1 m1 m'a

L1 = 7.5 L1 = 7.5L2=7.5 L2=7.5
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i) Choose Bay 2 at the end adjacent to support ‘b’: 

Determine s1 for the elastic moments 

1

2

i 92.78 / 31.53 2.94

i 61.85 / 31.53 1.96

= =

= =
 

 

 
1

3.94 1
s 7500 1995 mm

3.94 2.96
−

= × =
+

 
 

ii) Determine s1 for the yield line moments: 

1

2

i 74.3 / 47.69 1.558
i 47.69 / 47.69 1.0

= =
= =

 

 

 
1

2.558 1
s 7500 1492 mm

2.558 2.0
−

= × =
+

 
 

 

 

 Diagram showing elastic and redistributed moments at support b in bay 2  

 The critical point to be investigated is at the redistributed moment point 
of contraflexure. Here, 1.492 m from b, the elastic moment theoretically 
becomes zero. In order to determine its initial magnitude, and determine 
the 70% limit, it is first necessary to calculate Vbe. 
Vbe = 15.4 x 7.5 / 2 + (92.78 – 61.85)/ 7.5  = 61.874 kN 
m′e@1.492  = – 92.78 – 15.4 x 1.4922 x 0.5 + 61.875 x 1.492 
  =  –17.6 kNm/m 

 

 70% of this moment is 0.7 x –17.6 = -12.32 kNm/m 
This is the hogging moment that Clause 3.2.2.1 stipulates has to be 
resisted (yet from the redistributed moment diagram theoretically there 
is no hogging moment at this point). 

 

 However good detailing practice requires top support reinforcement to 
be extended at least to a quarter of the span. In this particular case cL 
was calculated to be 2625 mm, which is about a third of the span well 
beyond the point of contraflexure. 

 

 It can also be argued that concrete alone can resist a certain amount of 
tension as was established earlier showing that the cracking moment of 
resistance was 15.9 kNm/m which is > 12.32 kNm/m. 

 

Summary This calculation was carried out to show that the check for the 70% rule 
in the vicinity of the point of contraflexure is not warranted for the 
majority of cases that are likely to occur in practice. 

 

Points of contraflexure

Elastic moment

Redistributed moment

70% of elastic moment
0.7 x m'e @ 1.492 = 12.32 kNm/m

n = 15.4kN/m2

 m'e @ 1.492 = 17.6 kNm/m

 m
' be

 =
 9

2.
78

 k
Nm

/m

 m
' b 

= 
74

.3
 k

Nm
/m

 0
.7

 x
 9

2.
78

= 
6

5 
kN

m
/m

Support b  s1 = 1.492m

 s1 = 1.995m

Vbe
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3.2 Two-way spanning slabs 
3.2.1 General 

This section and the following deal with rectangular slabs supported on four, three or two 
sides, spanning in two directions.  
 
Again, the formulae give the designer a wide choice for the magnitude of the support 
moments. These ‘ i ‘ factors are chosen to reflect the kind of restraint offered by the 
support, expressed in terms of the ratio of the support to mid-span moments. The values 
commonly attributed to these ‘ i ‘ factors are 0 for a simple support, giving no resistance 
to rotation, up to anything between 1 and 2, usually dependant on the rotational 
resistance offered by the continuing slab in the adjoining bay. 
 
Wherever there is two-way action in a slab, the reinforcement in each direction is 
assumed to be stressed and to have yielded across a yield line. As explained in Chapter 2, 
in design a diagonal yield line (i.e. a yield line not at right angles to the reinforcement) is 
resolved into a stepped yield line with steps at right angles to the reinforcement. Again, 
the reinforcement crossing this diagonal yield line is assumed to yield. Usually these steps 
are projected onto two orthogonal axes of rotation and these projections are added to the 
length of the yield lines in both orthogonal directions. 
 
One of the key concepts used in the design formulae of continuous two-way slabs is (as 
seen in Figure 3.4) to consider a continuous slab as containing a simply supported slab 
within the lines of contraflexure. The parameters ar  and br  are the lengths of the sides, or 
reduced sides, of such a simply supported rectangular panel that produces the same 
midspan moments as the restrained panel with sides ‘a’ and ‘b’.  
 

 

Figure 3.4  Principles of designing two-way slabs supported on four sides 

 
The bottom reinforcement in the slab, as presented in these formulae, is assumed to have 
the same moment of resistance in each of the two directions at right angles to each other. 
This is called ‘isotropic’ reinforcement. This reinforcement is assumed to have the same 
effective depth in each direction, being the average of the effective depth in the two 
directions. When there are different quantities of bottom steel in each direction then the 
slab is said to be ‘orthotropic’. No special formulae are necessary for orthotropic slabs, as 
there are simple rules available that convert an orthotropic case to an isotropic one.   
 
The formulae for two-way slabs do not include for the effects of corner levers and it is 
therefore recommended that the ‘10% rule’ is applied to the moments (or reinforcement 
areas) derived from formulae for two-way slabs.  (See 1.2.11 and 1.2.12). 
 

b

a

br

ar

Continuous slab

Designed as simply
supported to deal
with continuous slab
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In the formulae for rectangular slabs supported on three or four sides, provision is made 
to include a line load parallel to the supports in each direction. This line load represents a 
heavy partition and is located in a position to create the maximum moment. It must be 
emphasized here that this is only valid if the line load is not the predominant load (see 
Partitions 3.2.3 below, otherwise a more onerous local failure pattern could develop). 
 

3.2.2  Holding down forces 
According to Yield Line Theory, at the ultimate limit state slabs supported on four sides 
produce uniformly distributed reactions in each support (Johansen [6]). The size of these 
reactions depends on the slab dimensions and their sum is higher than the applied load. 
This imbalance in equilibrium is redressed by holding down forces (or anchorage or 
negative reactions) in each corner. In a simply supported slab these forces represent the 
anchorage forces that would be required to prevent the corners from lifting off their 
supports. 
 

3.2.3  Partition loads 
Partitions are generally accounted for in a global uniformly distributed live load.  
When the line load from such a partition becomes exceptionally high, as would be the 
case with a dense, high party wall, then this is more appropriately dealt with as an 
independent line load. The formula used in Tables 3.6 and 3.7 is ideally suited for this 
purpose. There is, however, a limit to the size of such a line load for which the formula 
can be safely used. The limit depends on the size of the slab and support conditions and, 
for a rough estimate line load factors α or β should be less than 0.35. When this is 
exceeded it would be necessary to resort to first principles by using the Work or 
Equilibrium Methods of analysis.  
 
The interested reader can find further guidance on this topic on pages 23 - 24 and 117 - 
118 of Johansen’s Yield Line Theory [5] and pages 32 - 33 of his Yield Line formulae for 
slabs [6]. 
 
 



Practical Yield Line Design  

 66

h3h1

b

h2

h4

a

q4

pb

m pa q3

q2

q1

H1, 2

H1, 4 H3,4

H2, 3

m'3m'1

m'2

m'4

i2

i3i1

i4
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3.3 Two-way slabs - supports on 4 sides 
3.3.1  General 

In essence, the design moment, m, of a slab supported on four sides is determined by 
considering the central part of a continuous slab as being a simply supported slab, of 
reduced side lengths, supported at the points of contraflexure. Moments at continuous 
supports, or at least the fixity ratios at the supports, are chosen by the designer. Uniformly 
distributed loads and reduced side lengths can be adjusted to accommodate line loads.  
 
The formulae for determining moments, reactions and defining dimensions to the failure 
pattern in two-way spanning slabs supported on four sides as illustrated by Figure 3.5 are 
given in Tables 3.6a and 3.6b. 
 

  
Loading:     
UDL:  n [kN/m2] 
Line loads: pa, pb   
[kN/m] 
 

 
 

 
Isotropic 
reinforcement 

Figure 3.5  Slab supported on four sides 

Where  

m is the ultimate moment along the yield line (sagging) [kNm/m] 

m' is the ultimate moment along the yield line (hogging) [kNm/m] 

pa, pb  are the line loads (partitions) [kN/m] 

n is the  total ultimate uniformly distributed load, 1.4gk + 1.6pk [kN/m2] 

q is the reaction [kN/m] 

a, b, h are the dimensions [m] 

H is the holding down forces at corners [kN] 

i1, i2, i3, i4 are the fixity, the ratios m’i/m for regions 1, 2, 3 and 4 . 
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Table 3.6a  Formulae for slabs supported on four sides 

Fixity ratiosQ 

 
1

1
m

i
m

′
=  2

2
m

i
m
′

=  3
3

m
i

m
′

=  4
4

m
i

m
′

=  

ap
n b

α =
×

   bp
n a

β =
×

 Line load 
factors 

but if no line loads:  pa = pb = 0,  α = β = 0. 

Reduced 
sidesR r

2 4

2a
a

1 i 1 i
=

+ + +
  [m] 

  

r
1 3

2b
b

1 i 1 i
=

+ + +
    [m]        

Adjusted 
load 

(adjusted to 
account for 
relatively 
light line 
loads) 

 

( )•n n 1 2= + α + β    [kN/m2] 

 

Adjusted 
reduced side            •

r r
1 2

b b
1 3

+ α + β
=

+ β
          [m] 

Design 
momentS  

• •
r r
•
r r

•
r r

n a b
m

b a
8 1

a b

× ×
=

 
+ + 

 

        [kNm/m] 

 
 continued 

 
 
 
 
 
 
 
 

                                                       
Q In order to evaluate the moment ‘m’ a choice has to be made for the degree of fixity by way of choosing i1 – i4 along 
the four sides of the slab. The same principles for determining their values apply as discussed under the One-way 
spanning slabs. For a simple support this value is put to zero. 
 
R The parameters ar  and br  are the lengths of a simply supported rectangular panel that produces the same midspan 
moments as the restrained panel with sides ‘a’ and ‘b’. These parameters are often referred to as ‘reduced sides’. 
 
S The expression for evaluating the moment ‘m’ given here is a simplified version of the more rigorous formula, i.e. 

2
22

r r r

r r

na a a
m 3

24 b b

 
  = + −  
   

 (valid only without line loads and for br > ar ) 

The abridged version has the advantage of being easy to memorize and because the variables ar and br occur 
symmetrically in the formula it does not require br to be >ar. It gives results about 3% on the safe side. For design 
purposes it is recommended that this moment is increased by an additional 7% to bring the overall increase up to the 
level of the ‘10% rule’ to allow for the effect of corner levers forming etc. The designer may of course choose to add 
10%. 
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Table 3.6b Formulae for slabs supported on four sides (continued) 

Dimensions 
hi ( )

( )1 1
m

h 6 1 i
n 1 3

= +
+ β

  [m] 

r
2 2

a
h 1 i

2
= +       [m] 

( )
( )3 3

m
h 6 1 i

n 1 3
= +

+ β
    [m] 

r
4 4

a
h 1 i

2
= +           [m] 

ReactionsT 

q 1 1
r r

1 1
4m 1 i

a b
 

= + × + 
 

 

         [kN/m] 

q2 2
r r

1 1
4m 1 i

a b
 

= + × + 
 

  

         [kN/m]  

q3 3
r r

1 1
4m 1 i

a b
 

= + × + 
 

 

         [kN/m]  

q 4 4
r r

1 1
4m 1 i

a b
 

= + × + 
 

 

          [kN/m]  

Negative 
reactions (or 
holding down 
forces) 

1, 2 1 2H 2m 1 i 1 i= + × +      
         [kN]  

2, 3 2 3H 2m 1 i 1 i= + × +      
          [kN] 

3, 4 3 4H 2m 1 i 1 i= + × +      
            [kN] 

1, 4 1 4H 2m 1 i 1 i= + × +        
              [kN] 

 NB   These reactions apply only to slabs supported on four sides 
without line loads. Where there are line loads use engineering 
judgement to determine reactions (- the full theory is very involved!) 

Assuming isotropic reinforcement. 

Definitions as above or as before. 

 

                                                       
T When designing beams to the Elastic Theory, it has long been common practice to consider the distribution of load as 
that given by triangles and trapezoids with base angles of 45 degrees. This distribution is quite accurate provided, of 
course, that the beams are of adequate stiffness. Park and Gamble [11] have shown that if the loading distribution on 
the beams at collapse is taken to follow the shape of the segments of the yield line pattern, then the maximum ultimate 
moments calculated for the beams are identical with those calculated considering composite collapse mechanisms.  This 
was also shown by Wood [13] and Wood & Jones [14]. 
 
The values for the distribution and magnitude of reactions given in Table 3.6 are those given by Johansen [6] for a slab 
carrying a uniformly distributed load only supported on stiff beams that do not deflect appreciably.  Johansen showed 
the reactions to be evenly distributed along all four sides. The magnitude of the reactions depends on the slab 
dimensions and the moments induced. These reactions are accompanied by negative holding down forces at the corners 
of the slab.  As ever equilibrium must always exist between the total downward load on the slab, the reactions and the 
holding down forces at the corners.  
 
It has to be said, however, that theoretically the Yield Line Theory, being an upper bound kinematic technique, does not 
strictly offer any factual information on the distribution of stress-resultants (i.e. reactions and loads) remote from the 
yield lines themselves. Although true, the designer does need some guidance on the distribution of load onto beams. 
Provided the assumptions made are reasonable and equilibrium of external loads is maintained the approximations in 
the approach given above should be acceptable for design purposes. 
 
It must be stressed that the distribution of reactions can only be realized if the supporting beams are strong enough and 
stiff enough to carry the load without excessive deflection. If this is not the case then the load carried by the beam 
changes dramatically as the beam will fail compositely with the slab and the way the load will be divided between the 
slab and the beam will be determined solely by their respective ultimate moments of resistance. 
 
The formulae given in Table 3.6  for these reactions are valid only for the uniformly distributed load and should not be 
used when line loads are present. 
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Example 3D 
Two-way slab using formulae (with udl and line load) 

Using formulae, analyse and design the same 250 mm thick r.c. slab as in Examples 2A and 2B.  It is 9.0 by 7.5 m and 
occupies a corner bay of a floor that has columns at each corner connected by stiff beams in each direction. Allow for a 
total ultimate load of 20 kN/m2. Concrete is C40, cover 20 mm T&B. 
Establish what the effect would be on the amount of reinforcement required if there were a need to allow for a heavy 
partition weighing 20 kN/m (ult.) to be added in any location on the slab. 
 

Design procedure 

Floor layout 

 

 

Analysis; initially with udl only  

Corner bay slab supported on beams: with reference to Table 3.6a 
we get: 

  

1 1m i m′ =  

2 2m i m′ =  

 

 

 Determine moments: 

ChoosingU  i1 = i2 = 1 and     i3 = i4 = 0 

r
2 4

2a 2 7.5
a 6.213

1 i 1 i 2 1
×

= = =
+ + + +

 

r
1 3

2b 2 9
b 7.456

1 i 1 i 2 1
×

= = =
+ + + +

 

 

 
 
 

                                                       
U Analysis: In this instance it was assumed that the adjoining bays are of similar spans so that an ‘i’ value of 1.0 was 
considered appropriate for the two continuous sides. 

i1 = 1

i4 = 0

i3 = 0

i2 = 1

m'2

m'1

Line load 20 kN/m

n = 20 kN/m2]
7.5

9.0

b = 9.0m

m

h1 h3

m'1

m'2
n = 20 kN/m2

h2

h4

a = 7.5m

i4 = 0

i1 = l
i3 = 0 

i2 = 1

1

2
3

4



 

 70

Practical Yield Line Design 

 
 

 As there is no line load: 

α = β = 0   therefore    n n• =    and  r rb b• =  

r r

r r

r r

na b 20 6.213 7.456
m

7.456 6.213b a 8 18 1 6.213 7.456a b

× ×
= =

   + + + +    

 

 m = 38.18 kNm/m 

1 1m i m′ = = 38.18 kNm/m 

2 2m i m′ = = 38.18 kNm/m 

 

Check dimensionsV 
 Check that h1 + h3 ≤ b 

      ( )1 1
m 38.18

h 6 1 i 6 2
n 20

= + = × ×  = 4.78 m 

     ( )3 3
m 38.18

h 6 1 i 6 1
n 20

= + = × ×  = 3.38 m 

 4.78 + 3.38 = 8.16 < 9.0   O.K. 

 

 Check that h2 + h4 = a 

 r
2 2

a 6.213
h 1 i 2

2 2
= + =  = 4.39 m 

 r
4 4

a 6.213
h 1 i 1

2 2
= + =  = 3.11 m 

            4.39 + 3.11 = 7.5  O.K. 

 

Reactions: 
 

q 1 1
r r

1 1
4m 1 i

a b

1 1
4 38.18 2

6.213 7.456

 
= + × + 

 

 = × + × 
 

 

 

 

 

q1=  63.73 kN/m 

 

 

q2 2
r r

1 1
4m 1 i

a b

1 1
4 38.18 2

6.213 7.456

 
= + × + 

 

 = × + × 
 

  

q3 3
r r

1 1
4m 1 i

a b

1 1
4 38.18 1

6.213 7.456

 
= + × + 

 

 = × + × 
 

 

 

 
 
 
q2=  63.73 kN/m 

 
 
 
 
 

q3  = 45.06 kN/m = q4 

 

 

                                                       
VThe values for  h1, h2, h3 and h4 are also used in Example 2B. 
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 3.3 Two-way slabs - support on 4 sides: Example 3D

 
 

 
1, 2 1 2H 2m 1 i 1 i 2 38.18 2 2= + × + = × × = 152.72 kN 

 

 
1, 4 2, 3 1 4 2 3H H 2m 1 i 1 i 2m 1 i 1 i= = + × + = + × +   

= 2 38.18 2 1× ×  = 108 kN 

 

 
3, 4 3 4H 2m 1 i 1 i 2 38.18 1 1= + × + = × ×   = 76.36 kN 

 

 Check loads against reactions and holding down forces: 

Total load on slab: 20 x 9 x 7.5 = 1350 kN 

Total reaction on beams:  
    63.73 x (9 + 7.5) + 45.06 x (9 + 7.5)  = 1795.04 kN 

Total holding down forces at corners: 

   152.72 + 108 x 2 + 76.36    =  445.08 kN 

Thus 1795.04 – 445.08 = 1349.96 kN 

i.e. 1350 ≈ 1349.96 O.KW. 

 

Design   

 

dave = 250 – 20 – 12 = 228 mm 
6

2 3 2
cu

m 38.18x10
bd f 10 218 40

=
× ×

 = 0.02   ∴ z = 0.95d 

s reqd
38.18

A
0.95 0.218 0.438

=
× ×

 = 420.9 mm2/m 

Provide T12 @ 250 cc (452 mm2/m) each way bottom and at the 
top along sides a and b where slab is continuous. 

 

 
This is slightly less than the 10% increase usually recommended, 
but referring to the footnote to ‘Design Moment’ in Table 3.6a, 7% 
increase would be adequate to allow for corner levers.  

As 
452

As 1.074
420.9

=  > 7% increase  OK 

 

 
 

                                                       
W Reactions: It is of interest to note that, although equilibrium of vertical forces does exist, the total reaction carried 
by the beams is some 30% more than the total slab load. This is because the negative holding down forces at the slab 
corners affect only the load transmitted to the columns thus ensuring that the total load carried by them equals the load 
from the slab. As far as the beams are concerned, the moments in them calculated from this uniformly distributed load 
will not differ substantially from the moments if they were calculated in the more familiar way from the tributary areas 
formed by the yield line pattern. The shear forces to be allowed for, however, will be greater.  
 

250 

32

d = 218  
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Deflection   

 Serviceability checkX similar to that in Example 5A: 

Applying Cl. 3.4.6.5 from BS 8110 we get: 

βb = 1.1    As req = 420.9    As prov = 452 

d = 218    m = 38.18    L = 7.5   ∴ fs = 259.6 and k1 = 1.614, i.e. 

 L/d required = 26 x 1.614 = 42 

 L/d provided = 
7500
218

 = 34.4 

 as 34.4 < 42 OK  

 

Consider additional partition load of 20 kN/mY 
 

First try partition parallel with 'b' 

 

 

 
α = 0     β = bp 20

0.133
na 20 7.5

= =
×

 

( ) ( )n n 1 2 20 1 0 2 0.133

25.33 kNm/m

• = + α + β = + + ×

=
 

 

 ar = 6.213m as before 

r r
1 2 1 2 0.133

b b 7.456
1 3 1 3 0.133

7.092

• + α + β + ×
= =

+ β + ×

=

  

 

 
• •

r r
•
r r

•
r r

n a b 25.33 6.213 7.092
m

7.092 6.213b a 8 18 1 6.213 7.092a b

× × × ×
= =

   + + + +    

 

    = 48.24 kNm/m = m′ = m′1 = m′2 

 

 

                                                       
X Deflection: Deflection in two-way spanning slabs is always checked for the shorter span. Otherwise the procedure 
follows the same principles as in the One-way spanning slabs.  
 
Y Partition load: See Section 3.2.3 Partition loads. As the line load is relatively small (β = 0.133 i.e.<<0.35), use of 
formulae is OK.  

The supporting beams have been defined as ‘stiff’ so that the slab can be regarded as being supported on all four 
sides and therefore, at ultimate load, only the slab will fail leaving the beams intact. See section 4.4 How to tackle slabs 
with beams for when beams can be regarded as line supports – i.e. when they do not fail with the slab. 
 
 

a = 7.5

b = 9.0

pb n = 20 kN/m2

pb = 20 kN/m
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 3.3 Two-way slabs - support on 4 sides: Example 3D

 
 

 

Now check for partition parallel with 'a' 

 

 

 
Then 

Pa 20
nb 20 9

α = =
×

 = 0.111            β = 0 

n•  = 20(1 + 0.111) = 22.2 kN/m2 

∴as 22.2 < 25.3, partition parallel with ‘b’ is critical 

 

Design with partition 

 

2
s req

46.24
A 510 mm /m

0.95 0.218 0.438
= =

× ×
 

 
Provide T12 @ 200 cc (565 mm2/m) 

 

Deflection   

 Say βb = 1.1    As req = 510    As prov = 565    d = 218     

m = 46.24    L = 7.5    ∴ fs = 252 

k1 = 1.55  i.e. L/d needed = 26 x 1.55 = 40.37 

L/d provided = 34.4: as 34.4 < 40.37    O.K. 

 

Conclusion   

 Due to the addition of a line load of 20 kN/m in the most onerous 
location on the slab the reinforcement has to be increased from 
T12 @ 250 to T12 @ 200 in all locations. 

 

 

 
 

 
 

7.5
pa
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3.4 Two-way slabs – supports on 3 sides 
The basic yield line patterns that can develop in slabs with one free edge are indicated in 
the two cases shown in Figures 3.6 and 3.7. The correct pattern depends on the slab 
dimensions and boundary conditions. Broadly speaking the case shown in Figure 3.6 is 
more likely to occur when the side ‘b’ is greater than ‘a’ but when the difference between 
the two is not significant then either case can be relevant. If this is the case then both 
sets of formulae must be evaluated and, if both are found to be valid, then the greater 
moment should be chosen.  
 

Case A –  for h1 + h3 < b 

 

Loading 
n [kN/m2] 

pa [kN/m] 

pb [kN/m]  
 

 
 
 
 
 
 
 

 
Isotropic reinforcement 

Figure 3.6  Rectangular slab supported on 3 sides, Case A where h1 + h3 < b 

 

Table 3.7 Formulae for rectangular slabs supported on 3 sides, Case A where h1 + h3 < b [6] 

Line load factors  

a bp p
n b n a

α = β =
× ×

 

but if no line loads:  pa = pb = 0,  α = β = 0. 

Moments 

( )r

2 r

n a b 1 2
m

i b a8
4a h

× × + α + β
=

 + 
   

 

Dimensions 

r
1 3

2b
b

1 i 1 i
=

+ + +
  

   1 1 3 3where h h 1 i h h 1 i= + = +   

  where     
2 2 r

a
h

i b K
K K 1

2a

=
+ + +

 and         
( )

( )r

2a 1 3
K

3b 1 2
+ β

=
+ α + β

 

Key as Table 3.8 

 

h1 h3pb

a

b

pa

m'1

m'2

m'3

i1

i2

i3
m

1
1

2
2

3
3

m
i

m
m

i
m
m

i
m

′
=

′
=

′
=
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a

b

h2

h1 h3

i2

i1 i3

m'2

m'1

pa

pb

m
m'3

Case B - for h2 < a (i.e. h1 + h3 = b) 
 

 

I 

1
1

m
i

m
′

=   

2
2

m
i

m
′

=   

3
3

m
i

m
′

=   

ap
n b

α =
×

 

bp
n a

β =
×

 

 

Isotropic reinforcement 

Figure 3.7  Rectangular slab supported on three sides, Case B where h2< a (or h1 + h3 = b) 

 

Table 3.8 Formulae for rectangular slabs supported on 3 sides, Case B where h2< a [6] 

Line loads factors:  
a bp p

n b n a
α = β =

× ×
   

  
but if no line loads:  pa = pb = 0,  α = β = 0. 

Moments 

 

 

n a b
m

b a8 1
a b

′ ′ ′× ×
=

′ ′ + + ′ ′ 

 

where  

n’ = n x (1 + β + 2α) 

r
1 3

2b
a b

1 i 1 i
′ = =

+ + +
 

2

2a 1 2
b

1 31 i
+ β + β′ =

+ α+
 

Dimensions 

( )
2r r

1 1 2 3 3
6m(1 i )b b

h 1 i , h , h 1 i
2 n 1 3 2

+
= + = = +

+ α
 

Where  
m  is the span moment in each orthogonal direction    
m’  is the support moment 
pa, pb  are the line loads (partitions) [kN/m]  
n  is the total ultimate Uniformly distributed load, 1.4gk + 1.6pk [kN/m2]  
a, b  are the dimensions [m] 
i  is the fixity, the ratio m’i/m for i1, i2, i3.  
br is the reduced span ‘b’ 
a’ and b’ are the dimensions allowing for line loads 
n’  is the ultimate uniformly distributed load allowing for line loads  
h is the factor to determine h1 and h3 
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For design purposes, the moment given by the formula should be increased by 10% to 
allow for the effects of corner levers forming,.  
 
Again, the formulae incorporate a provision for a heavy, but not predominant, line load 
along the free edge and at right angles to it in the most onerous position. Reactions for 
this type of slab are more complex to evaluate and are beyond the scope of this 
publication. They are explained in detail in Johansen’s Yield Line theory [5, 6]. 
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Example 3E 
Two-way slab using formulae (supported on 3 sides) 

Analyse and design a 250 thick r.c. slab 9.0 x 5.0 m supported on walls on three sides with one 9.0 m span 
unsupported. Two adjacent supported sides are continuous with slabs of similar spans. Allow for a total ultimate 
distributed load of 20 kN/m2. Concrete C40, cover 20 mm T&B. 

 

Design procedure 

Slab layout 

 Slab depth = 250 mm, Concrete C40, Cover 20 mm  T&B 

AnalysisZ 
Case 1a Rectangular slab supported on three sides: with reference to Table 

3.7,  we get: 
 

 

 

 

 Choose I1 = I2 = 1   and  I3 = 0 

1 1 2 2m i m and m i m′ ′= =   

 

 
 
 

                                                       
Z Analysis: Because the side ‘b’ is considerably greater than side ‘a’ there is no difficulty in choosing ‘case 1a’ as being 
the appropriate one to use in this example. 

m

pa

h1 h3

i1 = 1

pb

i3 = 0 a = 5
m'1

i2 = 1
b = 9 m'2

1 1

2

2

250mm slab  
5

S
EC

TI
ON

 2
 -

 2

SECTION
1 - 1

9 
Wall supports

Line load pa  = 10 kN/m Line load pb  = 20 kN/m

 n = 20 kN/m2
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 ap 10
0.056

n b 20 9
α = = =

× ×
 

bp 20
0.20

n a 20 5
β = = =

× ×
 

 

r
1 3

2b 2 9
b 7.456

1 i 1 i 2 1
×

= = =
+ + + +

 

 
( )

( )
( )

( )r

2a 1 3 2 5 1 3 0.2
K 0.49

3b 1 2 3 7.456 1 0.056 2 0.2
+ β × × + ×

= = =
+ α + β × × + + ×

 

 

22 2 r

a 5
h 2.846

i b K 7.456 0.490.49 0.49 1K K 1
2 52a

= = =
×

+ + ++ + +
×

 

 
( ) ( )r

2 r

nab 1 2 20 5 7.456 1 0.056 2 0.2
m

i b 7.456 5a 88
4 5 2.8464a h

+ α + β × × + + ×
= =

   ++    ×  

 =  63.72 kNm/m 

 m’1 = i1m = 63.72 kNm/m = m’2 = i2m 

 
1 1h h 1 i 2.846 2= + =  = 4.025 m  

 
3 3h h 1 i 2.846 1= + =  = 2.846 m 

 

 Check: h1 + h3 < b 
4.025 + 2.846 = 6.871  < 9.0  therefore O.K. 

i.e. case 1a is a valid solution 

 

 

Design dave = 250 – 20 – 12 = 218 

6

2 3 2
cu

m 63.72x10
0.034 z 0.95d

bd f 10 218 40
= = ∴ =

× ×
 

2
s req

63.72
A 702.5 mm /m

0.95 0.218 0.438
= =

× ×
  

Provide T12 @ 150 cc (754 mm2/m)  

(As before this is a 7% increase which would be adequate to allow 
for the effects of corner levers [see footnote to Table 3.6a] but the 
design reinforcement may have to be increased further to reduce 
deflection especially towards the free edge) 

 

 
 
 
 
 
 

250 

32

d = 218  
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DeflectionAA 

 
Applying Cl. 3.4.6.5 from BS8110BB we get: 

βb = 1.1    As req = 702.5    As prov = 754 

d = 218    m = 63.72    L = 9 m    ∴ fs ≈ 260 and k1 = 1.358, i.e.: 

 L/d required = 26 x 1.358 = 35.31 

 L/d provided = 
9000

218
 = 41.28 

as 41.28 > 35.31 NOT O.K. 

So we have to increase the area of reinforcement provided in 
order to reduce strain 

Try T12 @ 100 cc (1131 mm2/m) 
 
Then:  

 fs = 173.16    k1 = 1.68 

 L/d required = 26 x 1.68 = 43.68 

 as 41.28 < 43.68 OK 
 

 

Note: 
1131

1.6
702.5

= :  60% increase for deflection purposes only.  This is 

1131/702.5 = 1.6, well in excess of the 10% recommended to allow 
for corner levers ∴ OK. 

 

 
 
 

                                                       
AA Deflection: Slabs supported on three sides with the long edge unsupported will always be very vulnerable to the 
deflection occurring at the middle of this edge. If it is crucial to limit this deflection due to sensitive cladding then a 
rigorous deflection calculation has to be carried out using a Finite Element Analysis or similar. In that case the 
span/depth method of the code cannot be regarded as being adequate.  
 
BB Serviceability check similar to that in Example 3A and 3D. 
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Example 3F 
Two-way slab using formulae (supported on 3 sides with line load) 

Analyse and design a slab 5.5 × 5.0 m supported on walls on three sides with one 5.5 m span unsupported. Two 
adjacent supported sides are continuous with slabs of similar spans. Allow for a total ultimate distributed load of 15 
kN/m2 and an ultimate line load of 20 kN/m along the unsupported edge. Assume the slab is 200 mm deep with 
isotropic reinforcement, concrete C40, cover 20 mm T&B. 

 

Design procedure 
Slab layout 

Slab depth = 200 mm, Concrete C40, Cover 20 mm T&B.  

Isotropic reinforcement 

AnalysisCC 
 Rectangular slab supported on three sides. Because the difference 

in length of the sides a and b is not pronounced, we need to 
evaluate both possible modes of failure in cases 1a and 1b to 
establish the worst case. With reference to Tables 3.7 and 3.8 we 
get: 

 

 
 
 
 
 
 
 
 
 
 
 
                                                       
CC Analysis: Here the side ‘b’ is only marginally greater than side ‘a’ so it is not possible to predict which of the two 
cases is going to be the right one. So we have to try both to see which one gives a more onerous solution. Because in 
this instance our case is a near transitional one the moment generated by each of the solutions is virtually identical. 
 

1 1

2

5 SECTION
2 - 2200 m

m sl
ab  

2

SECTION
1 - 1

5.5 
Wall supports

n =15 kN/m2

Line load pb  = 20 kN/m
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Case 1a 
 

 

 

 Choose  i1 = i2 = 1 i3 = 0 
|

1 1 2 2m i m, m i m′ = =  

 

 bp 20
0; 0.266

n a 15 5
α = β = = =

× ×
 

 

 

r
1 3

2b 2 5.5
b 4.56

1 i 1 i 2 1
×

= = =
+ + + +

 
 

 
( )

( )
( )

( )r

2a 1 3 2 5 1 3 0.266
K 0.86

3b 1 2 3 4.56 1 2 0.266
+ β × × + ×

= = =
+ α + β × × + ×

  
 

 

22 2 r

a 5
h 2.158

i b K 4.56 0.860.86 0.86 1K K 1
2 52a

= = =
×

+ + ++ + +
×

 

 
( ) ( )r

2 r

n a b 1 2 15 5 4.56 1 2 0.266
m

i b 4.56 5a 88
4 5 2.1584a h

× × + α + β × × + ×
= =

   ++    ×  

= 25.75 kNm/m  

 
1 1h h 1 i 2.158 2 3.05m= + = =   

3 3h h 1 i 2.158 1 2.158m= + = =  

 

 As h1  + h3 = 3.05 + 2.158 = 5.208 < 5.5 (b),  this is a valid 
solution. 

But try Case 1b: 

 

 
 
 
 
 
 
 
 
 
 

h1 h3

pb

i1 = 1

i3 = 0

a = 5

m'1
i2 = 1

b = 5.5
m'2

m
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Case 1b 
 

 

 

 Choose  i1 = i2 = 1;  i3 = 0;  2 1 2 2m i m; m i m′ ′= =  

. 0; 0.266•α = β =  

 

 a’ = br = 4.56 m (as before for case 1a) 

2

2a 1 2 2 5 1 0.266
b 7.96

1 3 11 i 2
+ β + α × +′ = = =

+ α+
 

 

 
( ) ( ) 2n n 1 2 15 1 0.266 19 kN/m′ = + β + α = + =  

 

 
n a b 19 4.56 7.96

m
7.96 4.56b a 8 18 1
4.56 7.96a b

′ ′ ′+ + + +
= =

′ ′   + ++ +   ′ ′   

= 25.98 kNm/m 
 

 
1 1m i m 25.98 kNm/m′ = =   

2 2m i m 25.98 kNm/m′ = =  

 

 

 

 

r
1 1

r
3 3

b 4.56
h 1 i 2 3.22

2 2

b 4.56
h 1 i 2.28

2 2

= + = = 

= + = = 

  5.5 =b 

2
2

6m 1 i 6 25.98 2
h 3.83

n(1 3 ) 15
+ × ×

= = =
+ α

 

As h2 =  3.83 < 5.0  then case 1b is also a valid solution. 

As Case 1b gives the greater moment, use case 1b in the design 

 

 
 
 
 
 
 
 

h1 h3

pb

i1 = 1 i3 = 0 

a = 5

m'1

i2 = 1
b = 5.5 m'2

m

h2
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Design 
 dave = 200 – 20 – 12 = 168 mmDD 

 

 

 Using the larger moment from case 1b 

6

2 3 2
cu

m 25.98x10
0.023 z 0.95d

bd f 10 168 40
= = ∴ =

× × ×
 

2
s prov

25.98
A 371.6mm /m

0.95 0.168 0.438
= =

× ×
 

Try T12 @300 cc (377 mm2/m) 

 

DeflectionEE 
 Applying Cl. 3.4.6.5 as before: 

βb = 1.1;    As req = 371.6;    As prov = 377;  d = 168;     

m = 25.98    L = 5.5    ∴fs = 274 and k1 = 1.476 

i.e. qL re uired 26 1.476 38.37D = × =  

 
5500L provided 32.74D 168

= =  = 32.74 

As 32.74 < 38.37 O.K. 

 

Check for corner levers 

 377
as 1.014, this is only a 1.4% increase.

371.6
=  

The recommended increase to allow for corner levers is 10%, i.e. 
371.6 x 1.1 = 409 mm2/m should be used. The nearest practical area 
is 452 mm2/m, giving T12 @ 250 cc. So this is what should be 
provided. 
 
T12 @ 250 cc bw B and over supports 

 

 
 
 
 
 
 
 

                                                       
DD  Wherever there is two-way action and both layers of reinforcement cross the yield line, it is usual to use average 
effective depths. 
 
EE Deflection: Although there was no need to increase the reinforcement quantities in order to comply with the 
span/depth deflection criterion the increase was needed to allow for the more critical pattern forming that includes 
corner levers. The comment about deflection to the unsupported edge given in the previous example is also relevant 
here although the proportions of the slab are more favourable. 

200 

32

d = 168  
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3.5 Two-way slabs - supports on 2 adjacent sides 
As shown in Figure 3.8, a slab supported on two adjacent sides can fail in one of three 
ways:  

• in combined sagging and hogging pattern 1 

• in combined sagging and hogging pattern 2, or 

• as a cantilever (pattern 3).  

 

 

Figure 3.8  Slab supported on 2 adjacent sides 

 
The formulae that are applicable to rectangular slabs supported on two adjacent sides are 
presented as three cases in Table 3.9:  

• Case 1 covers the simply supported case where failure pattern 1 applies. In the 
formula dimension ‘a’ must be allocated to the shorter side in order to get the 
largest value for ‘m’. It is also vital to ensure that the corner at ‘D’ is anchored 
down. In the simply supported case m’1= m’2 = 0. 

• In Case 2, at least one of the sides must be continuous. It is often not apparent 
which side should be allocated to ‘a’ or ‘b’ in the formulae i.e. whether to apply 
pattern 1 or pattern 2. In that case, each side should be applied in turn i.e. use both 
pattern 1 and pattern 2 definitions of ‘a’ and ‘b’, to find the most onerous value of 
‘m’.  

• Case 3 considers cantilever failure for both simple and continuous support 
conditions.  

 

 

 

PATTERN 1

PATTERN 2

A B

CD

A B

CD

a

b

i1

i2

m'1 m

m'2

a

b

i1

i2

m'1

m
m'2

A B

CD

a

b

i1

i2

m'1 = i1m

m'2 = i2m

BASIC LAYOUT

m'

A b B

D C

a

PATTERN 3

Loading n kN/m2

Unsupported edges
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Table 3.9 Formulae for rectangular slabs supported on 2 adjacent sides 

Case Description Pattern Formulae 

1 Simple supports:  
i1 = i2 = 0      

a < b          

1 
n a b

m a4 1.5
b

× ×
=

+
 

2 Continuous 
supports  
(or one continuous 
and one simple 
support): 

i1 and/or i2 ≠ 0          

1 or 2* 

r
1

b
b

1 i
=

+
 

r

r

2
r

n a b
m

2ba1.5 3 i 1
b a

× ×
=

 
+ + + 

 

 

3 Cantilever failure  
(continuous or 
simple supports) 

3 
n a b

m
a b6
b a

× ×′ =
 + 
 

 

Assuming isotropic reinforcement.  

* Check mode of failure by alternating dimensions a and b. 

Where  
m is the ultimate moment along the yield line [kNm/m] 

n  is the ultimate load per unit area [kN/m2] 

a, b  are the dimensions of slab [m] 

br   is the dimension of reduced side b [m] 

i1 , i2 are the ratios of support to midspan moments – the values of which are 
chosen by the designer 

m’1, m’2 are the support moments - the values of which are chosen by the designer  
[kNm/m] 

m’  is the ultimate negative moment (across the diagonal) 
 

 
The magnitude of the holding down force at the corner ‘D’ to prevent uplift is 
 
H = 2m [ ]kN1 21 i 1 i+ +  
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200

52

148d = 148

52

Example 3G 
Two-way spanning balcony slab using formulae (supported on 2 adjacent sides) 
Analyse and design a simply supported balcony slab 2.0 × 1.5 m supported on brick walls on two adjacent sides. The 
slab is 200 mm thick. The total ultimate load is 15 kN/m2. Concrete C30 cover 40 mm T&B. The slab is held down 
against uplift at corner D 
 

Design procedure 

Layout Balcony slab 
n= 15 kN/m2 

 
 

 

 

 

 

Isotropic reinforcement 
 

 

Analysis 
 Sagging, from Table 3.9 case 1 (a < b) 

n a b 15 1.5 2
m a 1.54 1.5 4 1.5

b 2

m 8.78 kNm/m

× × × ×
= =

+ + ×

=

 

 

 

 Hogging, cantilever, case 3 

kNm/m

n a b 15 1.5 2
m

a b 1.5 26 6
b a 2 1.5

3.6

× × × ×′ = =
   + +   
   

=

 

 

Design 
 dave = 200 – 40 –12 = 148 

 

 

 2mm /ms req
8.78

A 143
0.95 0.148 0.438

= =
× ×

FF 

Check for min. of 0.13%:  0.13 x 
1000 200

100
×

 = 260 

As 260 mm2/m >> 143 mm2/m there is no need to apply the 10% 
rule 

Provide T12 @ 300 T&B throughout (377 mm2/m) 
 

 

 
 

                                                       
FF By inspection z = 0.95 d 

200 mm slab

A B

CD

b = 2

a = 1.5
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 3.5 Two-way slabs - support on 2 adjacent sides: Example 3G 

 

DeflectionGG 
 Maximum deflection will occur at Corner B but only an elastic 

finite element analysis could establish the actual deflection. 
Span-to-depth ratio checks appear to be inappropriate. 
However, Johansen [6] gives guidance on determining the amount 
of the deflection. The formula he applies in this case is: 

 

 
( )2 22 m' a bm L

u
3EI 3EI

+′
= =  

where 
u is the deflection [m] 
E is the elastic modulus [kN/m2] 
I is the inertia [m4] 
EI is the flexural stiffness [kNm2] 

 

 

 The following calculation is intended to show how this formula 
might be applied to justify the slab design. 

 

 

 Because the corner is anchored (i.e. D), we should always use m′ = 
m, i.e. in this case m = 8.78 kNm/m. To get service load moment, 
assume: 

kNm/mserv
8.78

m 5.85
1.5

= ≈  

E, long term modulus, say N/mm226000
: 8667

3
=  

I, cracked inertia, say:  

 4mm /mm
30.8 148 1

216,000
12

× ×
=   

i.e. deflection u mm: 

( )
mm

2 2 95.85 1.5 2 10
u 6.5

3 8667 216000

× + ×
= =

× ×
 

Johansen recommends: 

mm
2 22L 1500 2000

u 10
500 250

+
≤ = =  

 
As 6.5 < 10, the slab would appear O.K. 

 

 

                                                       
GG In slabs of this nature, ultimate strength is rarely going to be the decisive factor, as the need to control deflections 
will usually be more important. Johansen [6] does give some guidance for obtaining approximate values for deflections 
based on the results obtained from Yield Line Analysis. See the Appendix. 
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3.6 Flat slabs (on a rectangular grid of columns) 
Flat slabs are very straightforward to analyse and design using Yield Line methods. 
 
Flat slabs on a rectangular grid of columns are essentially one-way continuous slabs in 
two directions and as such are analysed and designed separately in both directions. The 
most likely mode of failure is the folded plate mechanism where the plates run in either 
direction. The other possible collapse mode consists of inverted conical failure patterns. 
The design method and formulae for the inverted conical failure are described below and 
illustrated in Examples 4A, 4B and 4C. 
 
Notwithstanding the need to check the folding plate failures, flat slabs supported on an 
irregular grid of columns are most easily dealt with using the Work Method of analysis; 
the reader is directed to Example 4D. 
 

3.6.1  Modes of failure 
The collapse modes associated with flat slabs on a rectangular grid of columns are shown 
in Figures 3.9, 3.10 and 3.11 
 

 

Figure 3.9  Flat slabs: folded plate collapse mode 

A similar collapse mode, at right angles to the one shown should also be 
considered 

 
In Figure 3.9 the fracture line pattern consists of parallel positive and negative moment 
lines with the negative yield line forming along the axis of rotation passing over a line of 
columns. This forms a folded plate type of collapse mode with maximum deflection taken 
as unity occurring along the positive yield line. A corresponding pattern could take place 
at right angles. 
 

m m' m m' m m'

Positive yield lines
with unit deflection

Negative yield lines
along axes of rotation

Column supports

m'
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Figure 3.10  Flat slabs: combined folded plate collapse mode 

The assumed deflection at the column supports is 0, at midway between 
columns, the assume deflection is ½ and in the middle of the bay, 1. This 
mechanism is rarely investigated as there is no change in the collapse load 
compared to the mechanism shown in Figure 3.9. 

 
Figure 3.10 shows how these folded plate collapse modes could develop simultaneously in 
both directions. However, as there is no change in the collapse load, this mechanism is rarely 
investigated. The axis of rotation for this combined mode passes over the columns. The 
maximum deflection (of unity) occurs at the centre point in the bay and one half of the 
maximum deflection occurs at mid-point between columns along the negative yield lines. The 
fracture lines have been shown schematically on column centre lines but in reality these will 
form along column faces (because the yield lines must be straight).  
 

 

Figure 3.11  Flat slabs: conical collapse modes (with isotropic reinforcement) 

See Tables 3.10 and 3.11 for formulae for internal and perimeter supports 
respectively.  
NB Not to be confused with punching shear failures. 
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Figure 3.11 shows the other possible collapse mode consisting of inverted conical failure 
patterns occurring over each column. Around each column negative radial yield lines 
emanate from the centre and a positive circumferential yield line forms at the bottom of 
the cone shaped surface. This collapse mode requires that the remaining slab, the 
peculiarly shaped central rigid portion of the slab, drops down vertically. This 
displacement is given the value of unity. The positive circumferential yield line is circular 
for isotropic reinforcement and elliptical for orthotropic reinforcement with the larger 
dimension parallel with the direction of the stronger reinforcement  
 
The formulae for local failure patterns are shown in Tables 3.10 and 3.11. With 
concentration of top reinforcement at supports, as recommended in this publication, this 
mode of failure will generally not occur. 
 
A separate check for punching shear is required. 
 

Table 3.10  Flat slabs: formulae for local failure pattern at internal column support (in 
slabs with isotropic reinforcement) 

 

( )
3

S nA m
m m m 1 i 1 and i

2 S m

  ′
′  + = + = − =

 π  
 

Where 
m is the positive ultimate moment [kNm/m] 

m′ is the negative ultimate moment[kNm/m] 

 NB m’ ≤ 3m otherwise formula invalid 

n  is the ultimate uniformly distributed load [kN/m2] 

A is the area of column cross-section [m2] 

S is the ultimate load transferred to column from the slab tributary area [kN] 

 

Note: S may be equated to Vt, the design shear transferred to column as defined in  
 BS 8110, clauses 3.7.  Notwithstanding BS 8110, Cl 3.8.2.3, it is customary to 

 allow for elastic reactions in calculating this load. 
 

 
 
 
 
 
 
 

Column support

Positive circumferential yield line
creating tension in bottom fibres = m

1 1

Negative radial yield lines
creating tension in top fibres = m'

Slab plane prior to failure

m'

m

SECTION 1 - 1

Slab plane after local failure

r
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Table 3.11  Flat slabs: formulae for local failure pattern at perimeter columns (in 
slabs with isotropic reinforcement) 

 
General case 

( ) ( ){ }
3 nA

m 2 m m 1 i 1.14i S 1
S

 
′ω + + ω − π = ω + − = −  

 
 

 

Edge For i.e andm m i 1 180′ = = ω = = πo  

3 nA
5.14m S 1

S

 
= −  

 
 

Corner 
(extnl) 

For i.e andm m i 1 90 / 2′ = = ω = = πo   

3 nA
2m S 1

S

 
= −  

 
 

Where 

m is the positive ultimate moment [kNm/m] 

m′ is the negative ultimate moment[ kNm/m] 

 NB m’ ≤ m otherwise formula invalid 

ω is the angle described by edges of slab [rads] 

 NB 2π > ω ≥ π/3 (or 360° > ω ≥ 60°)- otherwise formula is invalid. 

 (π = 3.142 [rads]) 

n  is the ultimate uniformly distributed load [kN/m2] 

A is the area of column cross-section [m2] 

S is the ultimate load transferred to column from the slab tributary area [kN] 

 

The extent of local failure patterns 

For the patterns depicted in Tables 3.10 and 3.11, the radius of the positive 
circumferential yield line (from the centre of the column) may be calculated from: 

3
S

r c
n A

= ×
×

 

Where   
S, n and A are as above and  

c is the radius of an equivalent circular column.   

For a rectangular column of dimensions a and b the equivalent value of 
a b

c
×

=
π

 

Generally, except where columns are very large, r works out to be <0.25L for internal 
columns and <0.2L for perimeter columns. 
 

Column
support

Slab edge

m

m'

ω

r
i = m'/m
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The circular yield line is positive and requires bottom reinforcement. This reinforcement 
needs to be adequately anchored each side of the circular yield line - hence curtailment 
of bottom steel near supports is not advised. Top steel reinforces the top of the slab 
against radial negative yield lines within the area bounded by the circular yield line. To be 
effective this top reinforcement therefore needs only nominal anchorage, say 12 
diameters, beyond the circular yield line. Limits of 0.25L for internal columns and 0.2L (at 
right angles to the edge) for perimeter columns are advocated for curtailment of top 
reinforcement.   
 
Designers may wish to check curtailment using Tables 3.3 and 3.4 to ensure adequate 
anchorage in all situations. However, with the distribution of top steel advocated and 
usually employed, this local mode of failure is very rarely an issue that needs considering.   
 

Curtailment of reinforcement 

Similar to section 3.1.4, full ultimate loads are considered on each panel to determine the 
design moments in that panel.  For alternate bay loading the same rule for extending top 
steel by 0.25L into adjoining panels applies.  If the designer has any doubt about 
curtailment then Tables 3.3 and 3.4 can be used if a one-way failure is being investigated.  
If a two-way failure mode is being considered then these tables no longer apply and a 
different approach (as say Chapter 10 in ref 16) might be required.  However, applying 
Tables 3.3 and 3.4 in such cases will err on the safe side. 
 

3.6.2  Design procedure 
The procedure adopted for the analysis and design of this type of flat slab is to  

• Analyse the slab for the straight-line folded plate mode of failure as in Figure 3.9. 
Use the formulae in Table 3.1 to calculate moments 

• Analyse the slab for the straight-line folded plate mode of failure in the orthogonal 
direction. 

• Check against the local modes of failure developing, as illustrated in Figure 3.11. 
Use the formulae for calculating the moments presented in Tables 3.10 and 3.11. 

• Refer to Section 4.1 for notes on how to deal with line loads, deflection, punching 
shear and reinforcement arrangements, etc. 

 
Usually the formulae in Tables 3.1, 3.10 and 3.11 may be used.  However, as illustrated in 
Example 4B, it may be necessary to resort to the Work Method to deal with irregularities 
in the slab. 
 
The design procedure for flat slabs is illustrated in Examples 4A to 4D. 
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4.0 How to tackle . . . . 
4.1 Flat slabs: general  

The following three Sections deal with the design of flat slabs using Yield Line Design.  

• Section 4.1 deals with general issues.  

• Section 4.2 with flat slabs on a regular grid of supports using formulae (as Section 
3.6)  

• Section 4.3 with slabs on an irregular grid of supports using the Work Method (as 
Chapter 2).  

The methods described apply to slabs in braced frames. Lateral stability is assumed to be 
provided by some form of vertical bracing between columns or by shear walls somewhere 
within the confines of the building. Lateral stability, moments induced in columns, column 
connections and punching shear should be considered separately. 
 
The terms ‘regular’ and ‘irregular’ are used to describe the configuration of supports. A 
regular grid has columns along grid lines in two perpendicular directions forming a 
rectangular grid of columns. These tend to fail by a folded plate type mechanism in either 
of the two directions. 
 
All other configurations of supports fall into the irregular category.  Here no single type of 
failure mechanism can be said to predominate.  The yield line solution to be found 
involves investigating one or more of the following possible types of failure: 
 
1) A folded plate type mechanism that can form in any direction 

2) A failure of a panel  

a) in the form of a polygon that can be inscribed within any number of column or 
wall supports. The sides of the polygons are formed by axes of rotation which 
themselves are located at the face of or tangential to the supports. 

b) around the perimeter where yield lines may bisect the free edge 

c) as a cantilever type failure 

3) Local failure mechanisms over supports 
 
Few slabs are completely regular: the designer must be aware of all the possible failure 
modes that can occur and investigate those he or she considers could be critical. 
 
Flat slabs may either be solid or of waffle construction. They are supported directly on 
columns with no downstand beams. For the purpose of flexural design of the slab, column 
connections to the slab are considered as being theoretically pinned so that no moment 
transfer is taken into account.  
 
Although punching shear design is not intended to be part of this publication, Yield Line 
principles can be used as justification to concentrate top steel over column heads, thereby 
greatly enhancing the shear resistance in the vicinity of columns. 
 
Some general principles are discussed below. 
 

4.1.1  Perimeter loads  
A simple and conservative way of allowing for perimeter cladding loads is to incorporate 
this line load into an equivalent uniformly distributed load over a chosen width of slab and 
consider the overall straight line failure patterns.   
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Based upon elastic principles, BS 8110 Clause 3.5.2.2 spreads the line load over a width of 
0.3 x span. However with Yield Line Design, we should consider the global straight yield 
line failure mechanism for the combined load extending over the whole bay. As a matter 
of engineering judgement and bearing serviceability requirements in mind, the designer 
can err on the safe side by dissipating the additional uniformly distributed load over a 
reduced length of yield line rather than over its whole length. A reasonable compromise 
would be to spread the total load over a length of yield lines equal to 0.6 of the span of 
the slab and assess this width of slab independently of the rest of the slab.     
 
This method is conservative as it ignores the two-way action that a local failure pattern, 
instigated by a line load, would induce. A comprehensive treatise of this type of local 
failure is given in chapter 1.4 of Johansen’s book [6]. 
 

4.1.2  Deflection and cracking 
As far as deflections of flat slabs are concerned it can be said that no real consensus 
exists on how to establish actual deflections in flat slabs with any great accuracy [8]. 
 
Many different procedures exist. Most are very complicated as they require much detailed 
information that may not be readily to hand or can only be assessed quite arbitrarily. 
There is, nevertheless, a need to obtain some guidance for choosing a suitable depth of 
slab without resorting to these complicated methods.  
 
In the vast majority of cases, span-to-depth ratio methods are regarded as being perfectly 
adequate for checking deflection. Thus for checking flat slabs the recommended 
procedure is to adhere to the recommendation of BS 8110: Part 1:1997 Clause 3.4.6 for 
span/depth ratios modified by 0.9 as specified in Clause 3.7.8. Whilst it is a requirement 
to check the more critical direction, both directions are usually checked. EC2 has specific 
rules for checking deflection using span-to-depth ratios. 
 
In order to ensure that cracks will not be excessive, Clause 3.7.9 states that the 
reinforcement spacing rules of Clause 3.12.11.2.7 should be adhered to. 
 

4.1.3  Concentrating top reinforcement 
In designing top steel to Yield Line principles, the total bay moment is accommodated 
irrespective of whether the reinforcement is distributed over the whole bay or 
concentrated over only part of it.  
 
Yield Line Design, therefore, allows designers to choose, if they wish, other arrangements 
of reinforcement than those dictated by BS 8110 Clause 3.7.2.10 and Table 3.18. The 
advantages of concentrating it in the vicinity of the column is in enhancing the shear 
resistance of the slab and that the reinforcement is better placed at column heads to deal 
with the peaking of the moments at service loads. Table 4.1 gives commonly used 
concentrations of top reinforcement. 
 
Table 4.1  Common concentrations of top reinforcement over columns when using Yield 

Line Design 

Reinforcement concentrated in area of dimensions Location of column 

 x (or y)  y (or x) 

Internal  0.5 L x 0.5 L 

Edge  0.5 L x (0.2 L + E.D.) 

Corner  (0.2 L + E.D.) x (0.2 L + E.D.) 

Where  E.D.  =  edge distance, centreline of column to edge of slab  

    L  =  span 
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For resistance to local conical and punching shear failure, top reinforcement is best 
concentrated around the column. The designer may, if he or she wishes, keep to the code 
recommendation of dividing the total negative moment in the proportions 75% and 25% 
between column strips and middle strips respectively.  
 
This arrangement would be appropriate if there were a requirement to restrict cracking to 
a minimum for, say, a power floated finish with a high specification. There would then be 
a strong case for having top steel throughout. 
 
Omitting top reinforcement completely between concentrations over column heads can 
lead to some incidental cracking in these areas. This cracking is not detrimental to the 
performance of the structure and if in a non-aggressive internal environment with a finish 
over the top will very seldom cause a problem. The designer may of course choose to 
place nominal anti-crack mesh in the top of, effectively, the middle strip at supports 
 
Clause 3.7.3.1 of BS 8110 recommends placing 2/3rds of the column strip top 
reinforcement at supports in the middle ½ of the column strip width. This step is 
unnecessary with Yield Line Design. However, it is interesting to note that adopting the 
concentration of reinforcement advocated for Yield Line Design leads to the same 
concentration of reinforcement local to the column (assuming the same amount of 
reinforcement is required by the two methods), viz: 
 
BS 8110 advice:  2/3 of 75% in L/4  ≡ 200% per unit length 
Yield Line 100% in L/2  ≡ 200% per unit length 
 
While these layouts may differ from the elastic distributions advocated in BS 8110, Gilbert 
[10] reported that deflection in flat slabs is not significantly affected by varying the 
amounts of reinforcement between middle and column strips.  
 

4.1.4  Curtailment of top reinforcement 
In general the curtailment lengths should be checked using the formulae in Tables 3.3 
and 3.4. The procedure is described in the last part of Example 3A.  
 
In Yield Line Design, detailing is governed solely by the configuration of the crack patterns 
that can form and not by conventional rules used in association with Elastic Design (e.g. 
Figures 3.24 and 3.25 in BS 8110). Ignoring the tensile strength of concrete, full 
curtailment of bars results in a yield line moment capacity of zero. So once crack patterns 
are established, the designer has to ensure that curtailing bars does not produce another 
failure pattern that would result in a lower collapse load. This may mean that if first 
principles were used to establish the crack pattern without a maximisation process, the 
designer has to allow for a more onerous location of the yield line. At working loads there 
may be areas of the slab in tension. The designer can decide either to accept that these 
areas might crack, or he/she may increase the length of the reinforcement to take care of 
them. 
 
For the general case for flat slabs, when the  

• spans are approximately equal 

• loads are predominately uniformly distributed loads 

• design has been carried out using the single load case of maximum design load on 
all spans (see BS 8110 Clause 3.5.2.3)  

Then 100% top steel may generally be curtailed at 0.25 x span from the centreline of 
internal columns and 100% top steel may generally be curtailed at a distance of 0.20 x 
span, at right angles to the edge, from the centreline of perimeter columns. 
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4.1.5  Bottom reinforcement layout and curtailment 
One of the main advantages of using Yield Line Design for flat slabs is that bottom 
reinforcement may be placed at regular centres across whole bays, generally without 
curtailment. 
 
In Yield Line Design, curtailment of bottom reinforcement is best avoided because it is 
usual to assume a constant moment along the whole length of the yield lines. This is 
especially true for those yield lines that extend into corners of two-way slabs supported 
on line supports. This does not mean that bars cannot be curtailed away from the yield 
lines but it may then be necessary to check whether a yield line pattern giving a lower 
overall load capacity can develop along the line where the reinforcement is reduced. This 
can be investigated by either the Work Method or the Equilibrium Method of analysis. 
Jones gives guidance on this topic [16]. 
 
In Yield Line Design, the checks involving the localised failure modes around column 
supports use the full moment of resistance of the bottom reinforcement, m, within the 
areas of the local failure patterns. It is therefore advisable not to carry out any 
curtailment of bottom bars in these areas. 
 
Conventional detailing practice following the (elastic) bending moment envelope leads to 
inefficiencies in production due to: 

• Different length bars increase the number of bar marks and impose a strict discipline 
on their placing. 

• Staggering bars of the same length also slows down the laying process. 

• Changing bar diameters and their spacing to fit as closely as possible to the moment 
will also effect the time needed to place the bars.  Obviously, conventionally 
designed slabs can be rationalised, but this leads to higher overall reinforcement 
densities. 

• Complex reinforcement layouts also require more checking and offer very little 
flexibility. 

 
All these points incur increased labour costs and slow down progress on site. 
 
For Yield Line designs it is recommended that bottom steel is not curtailed. This leads to a 
reduced number of bar marks, greater efficiency and buildability on site. 
 

4.1.6  Perimeter details  
Local flexural failure modes are rarely critical for interior columns. However, reinforcement 
over internal columns is usually concentrated over a certain distance either side of the 
column support to enhance the punching shear resistance. This concentration of 
reinforcement is also used in the layout of reinforcement at perimeter columns where 
pinned supports are assumed in the design. The local failure modes used for establishing 
the minimum amount of this reinforcement, as given in Table 3.11, is best carried out for 
m = m’. It is then imperative to ensure that there is at least this amount of reinforcement 
top and bottom each way for a distance of 0.2 x span from the centre line of support at 
right angles to the edge of slab and 0.25 x span from the centre line of support in each 
direction parallel with the edge of slab. 
 
At corner columns too, it is best to proceed with the assumption that m = m’ and to 
provide ‘U’ bars at right angles to cater for this moment projecting as before for a 
distance of 0.2 x span from the centre of the column at right angles to the edge of slab. 
Corners with an angle of less than 90o should be avoided as they are difficult to reinforce 
efficiently and design against punching shear failure is then likely to become the 
governing factor. 
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Around the perimeter between the concentrations of reinforcement at the columns it is 
recommended to provide a concentration of reinforcement equivalent to a minimum of 
50% of end span bottom reinforcement in the form of ‘U’-bars with the top leg extending 
from the edge a distance of 0.2 x span from the centreline of support and the bottom leg 
having a tension lap with the bottom reinforcement. 
 
Local to the column, the slab should also be capable of accommodating transfer moments, 
Mt, subject to Mtmax, derived from considering column design (see below). 
 

4.1.7  Column design 
According to BS 8110, Clause 3.8.2.3, the axial load in columns at the ultimate limit state 
may be calculated assuming that beams and slabs transmitting force to it are simply 
supported. Whilst the slab is assumed to be supported on pins, it is usual practice to find 
the column design moments using a single joint sub-frame as BS 8110, Clause 3.2.1.2 or 
from the local Yield Line pattern as described by Park and Gamble [11].  In the case of 
unbalanced internal columns the local yield line pattern approach described in Chapter 
7.11.3 of Park and Gamble is advocated.  The moment transferred to an edge column 
(and indeed to be resisted locally by the slab) is limited to Mtmax as defined in Clause 
3.7.4.2 of BS 8110  
 
According to Eurocode 2 [3] columns should be checked for maximum plastic moments 
transmitted by connecting members. For flat slabs, this transfer moment should be 
included in punching shear calculations: for perimeter columns this is the equivalent of 
Mtmax in BS 8110, Equation 24. 
 

4.1.8  Punching shear 
Punching shear should be checked in the conventional manner. The design shear, Vt,  
transferred to the column is calculated on the assumption that the maximum design load 
is applied to all panels adjacent to the column; (assuming that slabs transmitting force to 
it are simply supported). Section 3.7.6 of BS 8110 details the effective shear force, Veff, to 
be used in punching shear calculations. 
 
Considerable research and testing has been carried out into flexural and punching shear 
failures and how they relate to each other. It has been shown that, in many cases, it is 
the bending strength rather than the shear strength of the slab that governs its punching 
shear resistance. The research carried out in this field by Hans Gesund, OP Dikshit & YP 
Kaushik [44,45] has resulted in a design procedure that, if adhered to, would ensure that 
the yield line flexural failure will precede a punching shear failure for a given design 
ultimate load. This means that it is always possible to safeguard against a punching shear 
failure prior to a yield line flexural failure. This research was carried out on slabs that were 
not reinforced for shear. When shear reinforcement is provided, it can aid ductility as well 
as increasing shear resistance. 
 
In the absence of the Gesund method, it is recommended that the BS 8110 approach is 
followed when dealing with braced flat slab frames, i.e. the effective punching shear, Veff, 
is a function of the moment transferred to the column. In unbraced flat slab frames where 
substantial column moments can be induced, a completely different situation would be 
created requiring a different approach. That is why this type of frame is not considered in 
this publication. 
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4.2 Flat slabs supported by a rectangular grid of 
columns 

4.2.1  Design procedure 
As previously described, the procedure adopted for the analysis and design of this type of 
flat slab is to: 

• Analyse the slab for the straight line folded plate modes of failure in one direction as 
in Figure 3.9, using the formulae in Table 3.1 to calculate moments. 

• Analyse the slab for the straight line folded plate modes of failure in the orthogonal 
direction. 

• Check for local modes of failure. Refer to the formulae described in Tables 3.10 and 
3.11 to calculate the moments. 

 

This process is illustrated by Examples 4A, 4B and 4C.  Example 4B shows how the Work 
Method may be used in conjunction with formulae to deal with irregularities. 
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 4.2 Flat slabs supported by a rectangular grid of columns: Example 4A 

Example 4A 
Flat slab using formulae 

Analyse and design the 250 mm thick flat slab in 7.5 x 7.5 bays shown below. The ultimate load is 14.7 kN/m2 of 
which ultimate dead load is 9.5 kN/m2 and ultimate live load 5.2 kN/m2. Concrete is C37 and cover 20 mm T&B. 
 

Slab layout 
 

 

Notes: possible folded plate yield pattern shown 
negative yield lines form on column lines 

 

Design parameters 

 Concrete C37 Cover 20 mm T&B Slab thickness 250 mm 

n = 14.7 kN/m2  g = 9.5 kN/m2  p = 5.2 kN/m2 

 

 

A A

2

3

2

250

250

400

400

400

400

7.5 7.5 7.5

7.3 7.37.1

B B

Positive yield lines

m

250

400

Negative yield lines at column face

7.5

m'

1

1

7.5

7.5

7.5

m' m m' m' m
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END BAY  
Analysis: 

 From Table 3.1 Case 2: 

( )
2

2

2

nL
m

2 1 1 i
=

+ +
               L = 7.3  i2 = 1HH 

m = 14.7 x 7.322 / 11.66  = 67.15 kNm/m 

m′ = i2m = 67.15 kNm/m 

 

Design of bottom reinforcement 

 As the spans are the same in both directions, consider reinforcement in the more onerous 
design condition. (Layering of reinforcement will however stay constant, see Figure 4.1.) 

         d= 250-20-16-16/2 = 206 

 

 
Lever arm: 

6

3 2

67.15 10
0.043 z 0.95d

10 206 37
×

= ∴ =
× ×

 
 

 2
sreq

67.15
A 783mm /m

0.95 0.206 0.438
= =

× ×
 

To satisfy deflection criteria try T16 @ 175 (1149 mm2/m) 

 

Deflection 

 Check span / effective depth ratio to Cl. 3.4.6 of BS8110.   

Assume βb = 1.1 ,     fs =  2/3 x 460 x 786 /1149 /1.10 = 190.7 N/mm²  

Tens mod factor k1= 0.55 + (477 - 190.7) /120 /(0.9 + 1.582) = 1.51 

 L
d  allowableII = 0.9 x 26 x 1.51 = 35.33 

 L
d  actual = 

7300
206

 = 35.44 

As 35.33 approx = 35.44 say OK 

 

INTERNAL BAY 
Analysis, design & deflection check 

 From Table 3.1 Case 1: 

( )
2

2

1 2

nL
m

2 1 i 1 i
=

+ + +
, L = 7.1, i1 = i2 = 1, 

214.7 7.1
m 46.31 kNm/m

16
×

= =   

 

 2
s req

46.31
A 540 mm /m

0.95 0.206 0.438
= =

× ×
 

Provide T16 @300 cc B (670 mm2/m) 

 

 

                                                       
HH The ratio of support to mid span moments has been chosen to equal unity. This is generally satisfactory for flat slabs unless 
there is a significant difference in the length of adjacent spans.  
 
II For flat slabs BS 8110 Clause 3.7.8 specifies a factor of 0.9 to be applied. 

44

d = 206  



  

 101
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1

2

3

2

L = 7500

L = 7500

3750
0.5L

1500

0.2L125

A B BL = 7500 L = 7500

125

m' m' 3750

0.5L

0.5L

3750

0.2L 1500m'

m'=

m' =0

0m'

m'

L = 7500

m'

m'

m' =0

m' =0

m' =0

 
 Check deflection:  

Assume βb = 1.2,  fs = 206,  Mu/bd2 1.09,  ∴k1 = 1.68  

 L
d  allowable = 0.9 x 26 x 1.68 = 39.31 

 L
d actual =  7100/206 = 34.47 

As 34.5 < 39.3 OK 

 

Proposed distribution of top of reinforcementJJ: 
   

Design of top reinforcement perpendicular and along grids 2 and B: 
 Consider one-and-a-half bays of negative (hogging) moment being resisted over the edge and 

penultimate column. 
Total negative movement along these lines: 
 67.15 kNm/m x (0.125 + 7.5 + 3.75) = 763.83 kNm 
Concentrating negative moment at column heads: 

 
( )

763.83
m

1.625 3.75
′ =

+
 = 142.1 kNm/m 

 

 
 

                                                       
JJ  Here, in line with one possible procedure described in section 4.1.3 for the distribution of negative moments, the top 
reinforcement is concentrated:  
• at internal columns over a square area of 0.5 L x 0.5 L,  
• at edge columns over an area of 0.5 L x (0.2 L + edge distance, E.D (edge distance) and  
• at corner columns over an area of (0.2 L + E.D.) x (0.2 L + E.D.).  

Between these concentrations of reinforcement it is assumed that m’ = 0 
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        d = 250 – 20 –16 –16/2 = 206 

Lever arm:
6

3 2

142.1 10
0.09 z 0.89d

10 206 37
×

= ∴ =
× ×

  

2
s req

142.1
A 1770 mm /m

0.89 0.206 0.438
= =

× ×
 

Provide T16 @ 100 cc T local edge and penultimate column parallel to edge (2011 mm2/m) 

See footnoteKK 

 

Top reinforcement perpendicular and along grid 3 

 Similarly, total moment along Grid 3: 
46.3 x 11.375 = 526.8 kN/m  

Concentrating negative moment at column heads: 

 
526.8

m 98 kNm/m
(1.625 3.75)

′ = =
+

 

 

 

Lever arm:
6

3 2

98 10
0.062 z 0.93d

10 206 37
×

= ∴ =
× ×

  

2
s req

98
A 1168 mm /m

0.93 0.206 0.438
= =

× ×
 

Provide T16 @ 150 cc (1340 mm2/m) 

 

Check local failure 
 Now we need to check the internal columns against local failure as shown in Table 3.10  

The formulaLL for this collapse mode is: 

3S nA
m m 1

2 S

 
′+ = −  π  

 

Where:- 

A = Area of column cross-section  [m2] 

 

 
S = Total ultimate load transferred from  

slab to column[kN] 

 

 

                                                       
KK Top reinforcement is best concentrated around the column. Here we decided to concentrate it over an area of side equal to 
0.5 of the bay width but this can be varied by the designer in order to satisfy other criteria. The designer could have kept to 
the (elastic) code recommendation of dividing the total negative moment in the proportions 75% and 25% in column and 
middle strips respectively. In that case we would have arrived at the following values for top reinforcement: 
 Total negative bay moment:   67.15 ×  7.5    = 503.6 kNm. 
 75% at the column would give:  75% x 503.6 / 3.75    = 100.7 kNm/m   and  

25% adjacent to this    25% x 503.6 / 3.75    =  33.6 kNm/m 
 

These column and middle strips are 3.75 m wide and would require T16 @ 150 cc T each way in column strips and T12 @ 300 
cc T together with some distributional reinforcement between in the middle strips. This compares to the T16 @ 100 cc T both 
ways chosen and specified here which also gives a slightly superior design concrete shear stress.  
 
The 75% : 25% arrangement would be appropriate if there was a requirement for a power floated finish having a high 
specification for admissible crack widths. There would then be a strong case of providing top steel throughout.  
 
LL See Table 3.10 

m

m
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 4.2 Flat slabs supported by a rectangular grid of columns: Example 4A 

 
 

Column B2: check local failure 
 S = ((0.55 x 7.5) + 3.75)2 x 14.7 = 912 kN 

A = 0.4 × 0.4 = 0.16 m2 
3 14.7 0.16

912
×

 = 0.137:   1 - 0.137 = 0.863 

So       
912

m m 0.863
2

′+ = ×
π

 

 

 But m is the moment of resistance, mr, using the bottom reinforcement.  

Average of bottom reinforcement: (NB no curtailment B) 

One way T16 @ 175 1149 mm2/m 

Other way T16 @ 300  670 mm2/m 

 Average =
1149 670

4
+

= 910 mm2/m at average d of say, 214 mm 

mr = 910 x 0.95 x 0.214 x 0.438 = 81.03 kNm/m  

 

 
So:    

912
81.03 m 0.863

2
′+ = ×

π
 

           m 125.3 81.03 44.27 kNm/m′ = − =  

but  from above ,m  at Column B2 has been designed for a moment of 142.1 kNm/m 

As 44.27 < 142.1 this local mode of failure is not critical 

 

Column B3 
 S = 7.875 x 7.5 x 14.7 = 868 kN 

3 14.7 0.16
868

×
 = 0.139:       1 – 0.139 = 0.861 

AsBaverage = 
3 670 1149

4
× +

 = 790 mm2/m 

mraverage  = 790 x 0.95 x 0.214 x 0.438   = 70.3 kNm/m 

 

 
Now             70.3 + m’ 

868
2

=
π

 x 0.861 

∴m’ = 119 – 70.3 = 48.7 kNm/m  

but m′  at Column B3 has been designed for a moment of  98 kNm/m 

∴as 48.7 < 98, this mode of failure will not occur and therefore not critical 

 

Edge and corner columns 
 The edge and corner columns will be analysed for a local failure occurring. From Table 3.11, the 

general formula covering this type of failure is: 

( )
3 nA

m 2 m S 1
S

 
′ω + + ω − π = −  
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ω

Slab edge

m

Column

m'

 
 

  

 

 

 

 

 
 
ω = Angle formed by slab edge 
S = Column load from slab 
A = Area of column section 

 

Column A1 
 

ω = 90° = 
2
π

   i.e. 

( )
3 nA

m 2 m S 1
S

 
′ω + + ω − π = −  

 
  

      
3 nA

1.57m 0.43m S 1
S

 
′+ = −  

 
 

 

 ChoosingMM m = m′  

3 nA
2 m S 1

S

 
′ = −  

 
  

S = 3.5 x 3.5 x 14.7 = 180 kN     [0.45 x 7.5 +0.125 = 3.5] 

and 

A = 0.25 x 0.4 = 0.1 m2  
3 14.7 0.1

0.2 : 1 0.2 0.8
180

×
= − =   

2 m 180 0.8

m 72 kNm/m

′ = ×

′ =
  

2
s req

72
A 809 mm /m

0.95 0.214 0.438
= =

× ×
 

Provide T12 @ 125 (905 mm2/m) 'U' bars each way 

(each leg 0.2L + 100NN = 1600 mm long)   

 

Column A2 
 ω = 180° = π , i.e. 

( )
3 nA

m 2 m S 1
S

 
′ω + + ω− π = −  

 
 

3 nA
3.14m 2m S 1

S

 
′+ = −  

 
 

 

                                                       
MM For all edge columns it is good practice to put m = m’ and then to make sure there is at least this amount of reinforcement 
top and bottom each way. Therefore at corners provide 'U' bars each way for this moment.  The slab should also be checked for 
column transfer moment. 
NN 100 mm = distance from centerline to edge of column: See also curtailment checks at end of this design. 
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 Assuming m = m’ 

       
3 nA

5.14 S 1
S

 
= −  

 
 

S = 3.5 x 7.875 x 14.7 = 405 kN      [7.5 x 0.55 + 7.5 x 0.5 = 7.875] 
3 14.7 0.1

0.154
405

×
=  1 – 0.154 = 0.846 

5.14m’ = 405 x 0.846  ∴m′= 66.7 kNm/m = m 

2
s req

66.7
A 749 mm /m

0.95 0.214 0.438
= =

× ×
 

Provide T12 @ 125 (905 mm2/m) 'U' bars    at right angles to the edge - as Column A1. 

 

 Check adequacy of the bottom reinforcement within this local failure pattern: 
 

2
sb,average

1.6 1149 1.6 670 3.75 905
A 907 mm / m

1.6 1.6 3.75
× + × + ×

= =
+ +

 

As   907 >  749   O.K.  Top reinforcement, by inspection, OK. 

 

Column A3 
 Local failure mode same as Column A2 so m= m’=66.7 kNm/m. 

Check that the bottom reinforcement is adequate for the moment from this potential local 
failure mode. 

The bottom bars in direction of numbered grid lines are 

 T12 @ 125 giving 905 mm2/m 

i.e. mr =905 × 0.95.× 0.218 × 0.438 = 82 kNm/m 

The bottom bars in direction of lettered grid lines are T16 @ 300 giving 670 mm2/m 

i.e. mr =670 × 0.95 × 0.206 × 0.438 = 57.4 kNm/m 

The average resistance moment of the bottom bars passing through the perimeter of the area 
of the concealed column head i.e.1600 × 3750 is: 

57.4 1.6 2  82 3.75
  71

3.2  3.75
× × + ×

=
+

 kNm/m i.e. as  71 > 66.7  O.K.   

Top reinforcement, by inspection, OK. 

 

Between columns 
 Around the perimeter between the column head reinforcement (i.e. concealed within the depth 

of the slab) it is recommended to provide a minimum of 50% of the required end span bottom 
reinforcement thus : in this instance   

2783
391.5 mm /m

2
=   Provide T12 @ 250 cc ‘U’ bars (452 mm2/m). 

 

 
 
 
 
 
 
 
 

5.14m’ 



 

 106

Practical Yield Line Design  

 
 

Top steel curtailment  

 
In simple slabs, it is customary (see section 3.1.4) to curtail top steel ¼ span from internal 
supports and approximately 1/5 span from end supports. Nonetheless these curtailments should 
be checked against local failure patterns by investigating the radius of the circular yield line, as 
per section 3.6.1. 
 
Internal column B2 :    

3400 400 912
c 226 mm r 0.226 1650 mm

14.7 0.16
×

= = = × =
π ×

  12 12 16 192 mm∅× = × =  

so from centreline total bar length required is  1650 + 192 = 1842 mm   say L/4  =1875  O.K. 

 

Edge column A2 : 
3250 400 405

c 178 mm r 0.178 1158 mm
14.7 0.1

×
= = = × =

π ×
   12 12 12 144 mm∅× = × =  

so from centreline total bar length required is   1158 + 144 = 1302 mm   say L/5  = 1500   O.K. 
 
Corner column A1 : 

c is 178 as before     
3 180

r 0.178 884 mm
14.7 0.1

= × =
×

  

so from centreline total bar length required is   884 + 144 = 1028 mm    say L/5 = 1500   O.K 

Punching shear 
 Punching shear design would be carried out at all column supports in the conventional manner 

for the following design effective shear loads in accordance with clause 3.7.6 of BS 8110:Part 1: 
1997 : 

Corner Column A1: 

 ( )2
tV 0.125 0.45 7.5 14.7 180 kN= + × × =      effV 1.4 180 252 kN= × =  

Penultimate edge Column A2 : 

 ( ) ( )tV 0.55 7.5 0.5 7.5 0.125 0.45 7.5 14.7 405 kN= × + × × + × × =  

 effV 1.25 405 506 kN= × =  

Internal edge Column A3 : 

              
( )t

eff

V 7.5 0.125 0.45 7.5 14.7 386 kN

V 1.25 386 483 kN

= × + × × =

= × =
 

Penultimate central Column B2 : 

 
( )2

t

eff

V 0.55 7.5 0.5 7.5 14.7 912 kN

V 1.15 912 1049 kN

= × + × × =

= × =
 

Internal central Column B3 : 

 
( )t

eff

V 0.55 7.5 0.5 7.5 7.5 14.7 868 kN

V 1.15 868 998 kN

= × + × × × =

= × =
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 4.2 Flat slabs supported by a rectangular grid of columns: Example 4A 

 
 

Reinforcement summary 
End bays T16 @ 175 B  

Internal bays T16 @ 300 B  

Penultimate supports T16 @ 100 T Extending 1875 either side of penultimate grid 
for 1625 from edge and for 1875 either side of 
internal grid 

Internal supports T16 @ 150 T Extending 1875 either side of internal grid for 
1875 either side of internal grid 

Corner columns T12 @ 125 U bars  Extending 1625 from edge for 1625 from edge 
both ways 

Edge columns T12 @ 125 U bars Extending 1625 from edge for 1875 either side 
of grid 

Edges T12 @ 250 U bars  

Punching shear 
reinforcement 

As designed  

 

For the top and bottom reinforcement layout see Figure 4.1. 
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Figure 4.1 Reinforcement layout for flat slab Example 4A 

Figure 4.1 shows the distribution of reinforcement. The bars have been placed in alternate layers, which enables 
the same ‘U’ bar to be used along each edge of the slab. The whole layout of steel has been designed to give the 
least number of bar marks, simple and easy to follow steel arrangement and as much repetition as possible. 
These are the hallmarks of economic construction. From this a transition to prefabricated mat reinforcement 
would be a simple step to make. There is no curtailment of bottom reinforcement. As the slab and its design 
complied with the conditions for simple curtailment, the top steel has been curtailed at 0.25 x span. 

7500 7500
A B B

125

f

125

1500

e
c

f

e

1500
1875 1875

1500

125

f

c

650 min. lap

650
overlap

a

b

1875 1875

c

c

1875

1875 c

c
1875

1875c

f

1500125

e b

1 1

7500

7500

2

1

3

d

f

b

d d

c

e Distribution bars - T12 @ 300
(not shown on plan)

250

a
b

e

SECTION 1 - 1

f

c

a = T16 @ 175 
b = T16 @ 300
c = T16 @ 100
d = T16 @ 150
e = T12 @ 250 = u bar
f = T12 @ 125 = u bar

e

e

a
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 4.2 Flat slabs supported by a rectangular grid of columns: Example 4B

Example 4B 
Flat slab (with void) using the Work Method  

Show how the design of Example 4A would be affected by the inclusion of a void in the bays between Grids 1 & 2 in the 
end of the 250 mm thick flat slab, shown below.  Concrete C37, cover 20 mm T & B. 

 
Slab layout 

n = 14.7 kN/m2,  gk = 6.5 kN/m2,  pk = 3.5 kN/m2 

Methodology 

The recess (or void) renders the slab irregular and as it does not now 
conform with assumptions inherent in using the formulae, it will be 
necessary to apply the Work Method to establish m and m’. 

 

1) Consider slab spanning in direction of lettered grid lines 
 Applying the work method, considering half of the slab (to the left 

hand side of the centreline) and choosing m = m’ and yield line 3300 
from grid line 1. 

 

 E = 

  

13.3 7.825n 12.91n2

14.0 7.825n 15.65n2

1.152.3 3.55n 2.35n4

× × =

× × =

× × =
=

30.91n∑ =

 

 

 D = 
17.825m 2.37m3.3

17.825n 1.96m4

111.375m 2.84m4

× =

× =

′ ′× =
=

7.17 m∑ =         NB: m = m’ 

 

A B B
7.825 3.55

m

m' m'

0.20

0.20

m' = 0'

1.625 3.75

7.5 7.50.125

0.202.3

5.0 

0.125

3.3

4.0

7.3

2.5

0.125

7.5

Void

7.5

3

1

2
m' = 0

CL = Line of symmetry

*

* Extent of designed top reinforcement

250 x 600 deep beam

*
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 From E = D, we get: 

7.17 m  = 30.91n 

m = 
30.91n

7.17
 = 4.31n = 4.31 x 14.7 = 63.37 kNm/m  

Applying the 10% rule to allow for onerous location of the yield line: 

m = 1.10 x 63.37 = 69.7 kNm/m 

m′ = 69.7 kNm/m 

 

Design of bottom reinforcement 

 6
2

cu 3 2

69.7 10
M/bd f 0.044 z 0.95d

10 206 37
×

= = ∴ =
× ×

 

As req = 69.7/(0.95 x 0.206 x 0.438) = 813 mm2/m 

Try T16 @ 150 cc (1340 mm2 /m) 

The rest of the bottom reinforcement in this direction stays 
unchanged compared to Example 4A. 

 

Deflection 
 As before, L

d  for flat slabs Cl. 3.7.8 from BS8110 

0.9 x 26 = 23.4  

βB = 1.1OO  ; fs = 2 x 460 x 813/ (3 x 1340) x 1/1.1  = 169  

M/bd2 = 1.64  , we get  k1 = 1.50 

 L
d  allowed = 0.9 x 26 x 1.56 = 36.5 

 L
d  actual = 7300 / 206 = 35.4 

As 36.5 > 35.4  O.K   

 

Design of top reinforcement (grid 2) 
 

 

 

As we intend to concentrate all the top steel in the vicinity of the 
column supports, we get: 

Total moment: 69.7 x 11.375 = 793 kN/m 

( )
793

m 147.5 kNm/m
1.625 3.75

′ = =
+

 

This applies to column head reinforcement at 2A and 2B, in direction 
of lettered grid lines.  Here “column head” refers to reinforcement 
concentrated within the depth of the slab. 

 

 6
2

cu 3 2

147.5 10
M/bd f 0.081 z 0.90d

10 222 37
×

= = ∴ =
× ×

 
 

 
2

s req
147.5

A 1685 mm /m
0.90 0.222 0.438

= =
× ×

 

Provide T16 @ 100 cc (2011 mm2/m) top as before) 

 

 
 
                                                       
OO  βB may generally be assumed to be 1.10. See Appendix for explanation. 



  

 111

 4.2 Flat slabs supported by a rectangular grid of columns: Example 4B

 

2) in direction of numbered grid linesPP 
 

 

 Applying the work method and choosing m = m’ 

E =  

13.3 11.375n 18.77n2

14.0 11.375 22.75n2

× × =

× × =
=

41.52n∑ =

 

 

 D =  
111.375m 3.45m3.3

111.375 2.84m4

16.25m 1.56m4

× =

× =

′ ′× =
=

7.85m∑ =   NB: m = m’. See footnoteQQ 

 

 

                                                       
PP  The analysis is based on considering yield lines in part of the slab.  The judgement of considering yield lines up to half way 
between grids 2 and 3 reflects balancing adequate analysis against saving computational time.  Analysis of the whole bay may 
have resulted in less reinforcement, but would have required greater effort. 
It will be noticed that in the diagram there is a yield line shown parallel and close to the adjacent opening. This apparent 
anomaly is explained by the fact that yield lines are straight and that this part of the yield line is an extension of the more 
global yield line. A yield line that cuts the opening would be feasible but the associated patterns would be complex and the 
effort required would be very hard to justify. In any event the designer’s discretion can be used and it will be seen later in the 
calculation that a value of zero has been given to the yield line adjacent to the opening.  
The beam bordering the recess is ignored in terms of the design of the slab. However, when considering deflection, it provides 
some continuity to the slab 
QQ The length of the negative yield line has been restricted to that length that might be considered as being continuous. 
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 From E = D, we get: 
7.85 m = 41.52 n 
 m = 41.52 x 14.7 / 7.85  = 77.75 kNm/m  
Apply 10% rule and increase 
: m = m’ = 1.1 x 77.75 = 85.53 kNm/mn 

 

Design of bottom reinforcement 

 6
2

cu 3 2

85.53 10
M/ db f 0.047 z 0.94d

10 222 37
×

= = ∴ =
× ×

  

2
s req

85.53.
A 936 mm /m

0.94 0.222 0.438
= =

× ×
 

Try T16 @ 150 cc (1340 mm2/m) 

 

Deflection 
 Although there is continuity in the majority of the slab spanning A to B 

and in the beam on grid 1, a part of bay A-B, 1-2 might be regarded as 
being simply supported spanning between A and B. This slab will be 
partway between simply supported and continuous.  
Using judgement assume 4.875 / 11.375 (43 % ) is simply supported 
and 57 % continuous. 
The basic span / effective depth ratio will then be :   
= (26 x 0.57 + 20 x 0.43) x 0.9 = 21.1  

2
b s u 11.0, f 214, M /bd 1.9 k 1.38β = = = ∴ =  

L
d  allowed = 21.1 x 1.38 = 29.1 

L
d  actual = 7300 / 222 = 32.9  Not OK 

 

 Try  T16  @  150 cc  top & bottom : (1340 mm2/m ) 

b s 1 21.0, f 214, k 1.38, k 1.18β = = = =  

L
d  allowable = 21.1 x 1.38 x 1.18 = 34.36 

L
d  actual = 7300 / 222 = 32.9  OK 

So in span provide  T16  @  150 cc  T & B: (1340 mm2/m) 
The rest of the bottom steel as the steel along Grid 3 stays unchanged. 

 

Design of top reinforcement 
 

 

 

Total moment: 85.53 x 6.25 = 534.56 kN/m 

m’ = 
534.56

3.75
  = 142.55 kNm/m 

6
2

cu 3 2

142.55 10
M/bd f 0.09 z 0.89d

10 206 37
×

= = ∴ =
× ×

 

2
s req

142.55
A 1775 mm /m

0.89 0.206 0.438
= =

× ×
 

Provide T16 @ 100 cc (2011 mm2/m)  (no change) 

 

Reinforcement 
 See Figure 4.2 for the reinforcement change as a result of the 

recess. 
 



  

 113

 4.2 Flat slabs supported by a rectangular grid of columns: Example 4B

 
 

Figure 4.2 Reinforcement layout with recess  

To be read in conjunction with Figure 4.1. Only reinforcement that has changed due to the addition of the 
recess is shown. 

The Work Method of analysis was applied to establish the required reinforcement for the case of the flat slab 
with a recess. The analysis and design was based on using a similar layout of bars to that used shown in 
Figure 4.1, which itself was based on analysing the slab as a one-way slab in two directions. Only 
reinforcement that required to be changed due to the addition of the recess is shown. 

All top reinforcement in column head areas remains unchanged. 

For serviceability reasons there was a need to add compression reinforcement in the end bay in one 
direction for which distribution steel (not shown) would be required. 

1

3

2

  b   as before

gg

b

d

d

g

A B

d

e

5.0

g .... T12 @ 200 = u bar
for b, d, e See Fig. 4.1
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Practical Yield Line Design 

Example 4C 
Flat slab using formulae (with line load) 

Investigate the effect that an edge line load of 8.85 kN/m for cladding along grids A and 1 will have on the analysis and 
design of Example 4B. 
 

Slab layout as (before) 
 

 

 

 The effect of adding a line load of 8.85 kN/m is as follows:  

 Ultimate line load :   1.4 x 8.85 = 12.39 kN/m 

ConvertingRR to an equivalent uniformly distributed load by spreading over a width of 0.6 of the 
span gives : 

  Slab width : 0.6 x 7.1 = 4.26 m     so : 
12.39

0.6 7.1×
 = 2.9 kN/m2 

The increased uniformly distributed load is therefore 14.7 + 2.9 = 17.6 kN/m2 

 

 We can now re-analyse the flat slab on an edge strip width of 4.26 m. 

In order to use the formula in Table 3.1 case 3 we need to express the support moments obtained 
previously as a value per m run over the width of 4.26 m. 

 

Internal bay: Consider 4.26 m wide edge strip between columns A2 & A3 
 Choosing to maintain the top reinforcement at A2 parallel with the edge as T16 @ 100, the 

moment of resistance is: 

mr = 2011 x 0.88 x 0.222 x 0.438 = 172 kNm/m 

However this is at the column head over a width of 1.625 m so in order to convert this to an 
equivalent or average moment per m run over our strip of 4.26 m we get: 

m′1 = 172 x 1.625 / 4.26 = 65.6 kNm/m 

The top reinforcement at A3 parallel with the edge is T16 @ 150 with 
mr = 1340 x 0.915 x 0.222 x 0.438  = 119 kNm/m  

m′2 = 119 x 1.625 / 4.26 = 45.4 kNm/m 

 

 
 
 
 
 

                                                       
RR See Section 4.1.1, perimeter loads 

CL

4.875

A B B
7.825 3.55

0.20

0.20
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0.125
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2

= Line of symmetry
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250 x 600dp beam

7.1

7.300

4.38
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for line load

Effective width for line load4.26
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 4.2 Flat slabs supported by a rectangular grid of columns: Example 4C

 
 

Consider as Table 3.1, Case 3: 

2 2
1 2nL 17.6 7.1 887  &   m m 65.6 45.4 20.2′ ′= × = − = − =  

( )2
21 22

1 2 2

m m 20.2nl 4 m m 887 4 65.6 45.4nL 887
m 55.6 kNm/m

8 8

 ′ ′−  ′ ′ − + − − + −  
   

= = =  

the bottom reinforcement required in the 4.26m wide strip is: 
2

sreq
55.6

A 649mm / m
0.95 .206 0.438

= =
× ×

 

 

 

 Try T16 @ 250 (804 2mm /m )  

Check deflection:   
 βb = 1.2,   fs = 206,    k1 = 1.57 

L
d  allowed  = 23.4 x 1.57  = 36.7 

L
d  actual  = 7300 / 206 = 35.4  OK. 

 

Summary for A2 to A3 
 Provide T16 @ 250 B over a width of 4.26 m in the bay between grid lines 2 & 3.  

(was T16 @ 300 without edge line load) 
 

Support A2 
 As discussed above, T16 @ 100T will be used. This equates to m’2 = 65.6 kNm/m over the 4.26 m strip width 

End span A1 to A2.   
 Consider the 4.26 m wide edge strip between columns A1 & A2. The negative moment at Col. A2 

has previously been established, m’2 = 65.6 kNm/m, and Col. A1 is a simple support. So case 4 of 
Table 3.1 may be applied to establish the span moment: 

( )( )22 2
2 2nL 4 m m nL

m
8

′ ′− −
=  

nL2 = 17.6 x 7.32 = 938,   m′2 = 65.6 

( )2938 4 65.6 65.6 938
m 86.7 kNm/m

8

− −
= =  

 

 The required bottom reinforcement in the 4.26 m wide strip is: 

 q
2

sre
86.7

A 1028 mm /m
0.935 .206 0.438

= =
× ×

 

 

 Try T16 @ 100 (2011 mm2/m)  

Check deflection:  
 b s 11.1 , f 143, k 1.5β = = =  

L/d allowed  = 23.4 x 1.5 = 35.1   :  L/d actual  = 7300 / 206 = 35.4  OK. 

 

 As 35.1 approximately = 35.4 consider OK  
Provide T16 @ 100 (2011 mm2/m) over a width of 4.26m in the end bay. 

 

 Here it can be seen that in order to comply with BS 8110 deflection criteria the area of bottom 
reinforcement had to be virtually doubled. 
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Practical Yield Line Design 

 

Grid 1 
 Design the slab for the edge line load as being simply supported but when checking 

for the deflection, take into account the continuity offered by the adjoining beam.SS 
 

 Ultimate line load : 1.4 × 8.85 = 12.39 kN/m  

 Converting this to an equivalent uniformly distributed load by spreading over a 
width of 0.6 of the span gives: 

Slab width: 0.6 × 7.3 = 4.38 m     so : 
12.39

0.6 7.3×
 = 2.8 kN/m2 

The increased uniformly distributed load is therefore 14.7 + 2.8 = 17.5 kN/m2 

 

Edge strip  
 The midspan moment is: 

2 2n L 17.5 7.3
m 117 kNm/m

8 8
× ×

= = =  

 

 m/bd2fcu =117 x 106 / (103 x 2222 x 37) =0.064 

z = 0.92 x 222 = 204.2  

Asreq = 117 x 106 / 204.2 x 438 = 1308 mm2/m 

Try T16 @ 100 cc T & B (2011 mm2 T & B) 

 

Check deflection 
 βb = 1.0,   fs = 199.5    k1 = 1.256,   k2= 1.232 

L/d allowed  = 21.1 x 1.256 x 1.232 = 32.65 

L/d actual  = 7300 / 222 = 32.9 Say OK. 

 

Check for local failure 
 We now need to check whether the reinforcement that is now in place due to the 

inclusion of the line loads also satisfies the local failure criteria for the edge and 
corner columns. 

 

a) At column A1  

The previously established load, S, was 180 kN. The additional load is 

 12.39 × 7.5 = 93 kN. 

S becomes : 180 + 93 = 273 kN 

 

 

For corner columns 2 m′ = 
3 nA

S 1
S

 
−  

 
 

3 14.7 0.1
0.175          1 0.175 0.825

273
×

= − =  

m = m′ = 273 x 0.825 / 2 = 112.5 kNm/m 

 

 
 

                                                       
SS Along grid 1 in the centre bay there is a beam 250 mm wide by 600 mm deep adjacent to the opening. In instances like this, 
(where the slab over the clear width of the opening of 4875 mm is discontinuous but the edge of the slab, where the line load 
acts, it is continuous with the beam which forms a frame with the supporting column), it is up to the designer to decide how 
best to deal with the situation. The decision in this instance is to design the slab for the edge line load as being simply 
supported but when checking for the deflection to take into account the continuity offered by the adjoining beam. 
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 4.2 Flat slabs supported by a rectangular grid of columns: Example 4C

 
 However we know that the reinforcement provided here is as follows : 

Top:   T12@125 giving an mr of 82 kNm/m 

Bottom: T16 @ 100 both ways. Average d = (222 + 206)/2 = 214 so average mr  = 
2011 x 0.88 x 0.214 x 0.438 = 166 kNm/m  

 

 From the general form of the equation for corner columns in Table 3.11 we have: 
3 nA

1.57m 0.43m S 1
S

 
′+ = − 

 
 

1.57m 0.43 82 273 0.825+ × = ×  

                          m 120.9kNm/m=  

 

 As 120.9 is less than the 166 kNm/m provided OK. 

This also complies with the condition m m.′ ≤  

 

b) At column A2  

The previously established load, S, was 405 kN. The load increase due to the line 
load is : 12.39 ×.7.5 = 93 kN. 

S becomes : 405 + 93 = 498 kN 

Now for edge columns: 

5.14 m = 
3 nA

S 1
S

 
−  

 
 

  
3 14.7 0.1

0.143               1 0.143 0.856
498

×
= − =  

5.14 m′ = 498 x 0.856 

    m′ = m′ = 83 kNm/m 

 

 The top reinforcement provided here is as follows : 

T16 @ 100 with mr= 172 kNm/m  (parallel to edge as above) 

T12 @ 125 giving mr= 905 x 0.95 x 0.208 x 0.438 = 78.3 kNm/m  (perpendicular 
to edge as Figure 4.1). 

This gives an average of :   

m′ = (172 x 2 x 1.6 + 78.3 x 3.75) / (3.2 + 3.75) = 121.4 kNm/m 

 

 At the bottom : 

T16 @ 100  giving  mr of 160 kNm/m  (A1 to A2 as above) 

T16 @ 175 giving mr= 1150 x 0.9 x 0.222 x 0.438 = 100.6 kNm/m  (A2 to B2 as 
Figure 4.1). 

T16 @ 250 giving mr=804 x 0.95 x 0.206 x 0.438 = 68.9 kNm/m  (A2 to A3 as 
above) 

This gives an average of :  

 

 m = (160 x 1.6 + 68.9 x 1.6 + 100.6 x 3.75) / (3.2 + 3.75) = 107 kNm/m 

It can be seen that both m & m′ exceed the required 83 kNm/m so O.K. 

 

 
 
 



 

 118

Practical Yield Line Design 

 

c) At column A3  
The increased load due to the line load here is similar to Col.A2 i.e. 498 kN. So here 
again m = m’ = 83 kNm/m  

The reinforcement provided here is as follows : 

At the top : 

T12 @ 125 with mr= 78.3 kNm/m 

T16 @ 150 giving mr= 1340 x 0.90 x 0.222 x 0.438 = 117.3 kNm/m  

This gives an average of :     

m’ = (117.3 x 2 x 1.6 + 78.3 x 3.75) / (3.2 + 3.75) = 96.3 kNm/m  

At the bottom : 

T16 @ 175 giving mr= 1150 0.9 0.222 0.438 100.6 kNm/m× × × =  

T16 @ 250 giving mr= 804 0.95 0.206 0.438 68.9 kNm/m× × × =  

This gives an average of :  

 

 m = (68.9 x 2 x 1.6 + 100.6 x 3.75) / (3.2 + 3.75) = 86 kNm/m  

It can be seen that both m & m’ exceed the required 83 kNm/m so O.K 

 

Summary 
 Local flexural failure is not critical.  

(With experience these types of justifications can be done ‘by inspection’.) 

Punching shear 

 Punching shear would need to be checked for the increased load of the cladding. 

 At Column A1 the load increase due to cladding is 12.39 x 7.5 = 93 kN.  It will be found that due to 
the new load of 180 + 93 = 273 kN the top reinforcement here has to be increased to T12 @ 100 
cts each way in order to keep v below 2vc. 
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 4.2 Flat slabs supported by a rectangular grid of columns: Example 4C

 
 

Figure 4.3 Reinforcement layout with recess and edge load 

To be read in conjunction with Figures 4.1 and 4.2. Only reinforcement that has changed from Figures 4.1 
or 4.2 due to the addition of the edge load is shown  
 
The slab carries an 8.85 kN/m edge load, which is carried by edge strips in the slab. These strips have been 
analysed using formulae from Chapter 3.  
 
All top reinforcement in column head areas remains unchanged. The additional bars marked j are required 
for punching shear. In practice the centres of the perimeter U-bars would be changed to match the revised 
reinforcement.  
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4.3 Flat slabs on an irregular grid of columns 
4.3.1  The problem 

Quite often there is a need to use flat slab construction in a building where no regular 
column grid exists. Typically, this might be a multi storey block of apartments with 
planning permission (often with car parking below and little engineering input with respect 
to vertical structure!). It is then the engineer’s task to find locations for columns such that 
do not interfere with usable areas (or buildability). If a solution can be found, columns will 
be confined to the lines and intersections of internal walls/partitions. Despite best efforts, 
this will inevitably give rise to an irregular layout of column and load-bearing walls. 
 
Conventionally such slabs would be exceedingly difficult to analyse and design - even with 
the help of Finite Element Analysis. The following design method is based on years of 
practical experience. It awaits theoretical justification. 

 

4.3.2  The solution 
Yield Line Theory is well suited to deal with irregular slabs of this type, but a certain amount of 
experience is needed in visualising the possible failure patterns that could develop. Analysis of 
these slabs requires the designer to search for failure patterns that could form anywhere within 
the configuration of the supports.  It must be borne in mind that the axes of rotation that 
define these patterns are located at the faces of the columns and that these axes can have any 
orientation on plan.  The task is then to establish the pattern that produces the greatest 
moments. The types of patterns that should be investigated are as follows: 

 

1. Always investigate first whether a straight, folded plate type, failure pattern can develop 
within the support lines, at any angle, from one extremity of the slab to the other.  This 
would be the case for instance where a regular skew column grid exists and this type of 
failure would run at an angle following the skew. 

 Folded plate mechanisms can also ‘snake around’ while still complying with the rules for 
yield lines outlined in Table 1.2. In such cases analysis should be done using the Work 
method rather than totally reliant on formulae.  

 
2. a)  Search for the largest polygon that could be inscribed within any number of column 

and/or wall supports.  The sides of the polygon form the axes of rotation that define the panel 
of slab that has been formed in this way.  The sides can either be treated as continuous, 
when located within the body of the slab, in which case they will form negative yield lines or 
simply supported when located over columns situated along the edge of the slab. For many 
slabs it will be possible to confine this search for the worst case to quadrilaterals and apply 
appropriate formulae. For further information see Bulletin d’information No.35 [2] cases 31 & 
32. and Johansen’s Yield Line formulae for slabs [6] under 2.2 and 2.3. 

 A quick, approximate, solution can be arrived at by considering the largest rectangle that 
can be inserted between the columns and walls in any location within the layout of the 
floor. This rectangle is then analysed as a slab supported along its sides which form the 
axes of rotation of the panel. Where the sides of the rectangle coincide with the edge of the 
floor slab a simple support must be assumed but where these are located within the floor 
area a negative yield line is formed.  

b)  Around the perimeter of the slab (if stiff edge beams have not been provided) 
investigate panels where yield lines bisect the free edge. 

 
c) Check for cantilever, any part of the slab that projects beyond the perimeter of the 
slab forms a cantilever and as such can fail with a negative yield line forming along the axis 
of rotation which coincides with the line of supports. 
 

3) Check for local failure mechanisms over supports as Table 3.10 and 3.11 
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When applying these methods of analysis it is prudent to increase the design moment by 
15% (rather than the usual 10% in the 10% rule). 
 
To arrive at an optimum design moment for the slab as a whole the number and shape of 
failure patterns investigated will depend on the designer’s experience and confidence that 
the worst case patterns have been investigated and catered for. For the less experienced, 
there is comfort in the fact that considering slabs in the failure patterns listed above will 
have been increased by 15 % to cater for the approximations inherent in this approach. 
There is also the added reassurance that the beneficial effect of membrane action has not 
been taken into account. Further enhancement to the resistance moment will usually be 
provided to comply with serviceability requirements. 
 
Again, lateral stability, moments induced in columns, column connections and punching 
shear should be considered separately. For the purpose of flexural design of the slab, the 
column connection to the slab is considered as being theoretically pinned. 
 
The design usually ends up with a continuous mat of reinforcement, of an isotropic 
nature, top and bottom each way.  Additional top reinforcement is added in the vicinity of 
the columns to deal with the peaking serviceability moments and to enhance the punching 
shear resistance.  It has the additional role of precluding a local cone type failure, centred 
on the column supports, from occurring.  Additional bottom reinforcement is sometimes 
required in the larger panels to deal with larger span moments and, more usually, to 
comply with deflection criteria.  Providing isotropic orthogonal reinforcement has the 
advantage of simplifying the placing of bars and ensures that the design is valid for any 
orientation of the Yield Line pattern. 
 
Because of the random nature of the column positions it pays, for simplicity of placing and 
detailing of the reinforcement, to have mats of top and bottom reinforcement throughout. 
If these mats are provided with full tension laps bars can be spliced at positions suited to 
the construction process and convenient bar lengths. This isotropic arrangement of 
reinforcement is also well suited to deal with any failure pattern that may arise. It can 
also be supplemented with extra top reinforcement at selected column positions to 
enhance shear resistance and deal with peak moments at the serviceability stage.  
 

4.3.3  Punching shear 
According to BS8110, equation 25 et seq, the design effective punching shear force is 
dependant on the moment transferred to the column. With perimeter columns, moment 
transfer is limited to Mtmax and punching shear design for these irregular flat slabs follows 
normal methods. 
 
However, there is no such Mtmax limitation for internal columns - because in usual regular 
layouts the transfer moment is small and the breadth of the effective moment transfer 
strip is unlimited. In irregular layouts the internal columns can be subject to theoretically 
high transfer moments and therefore to high design effective punching shears, Veff. The 
calculation of transfer moment in such situations is a matter of judgement and 
experience.  In this respect, either the methods presented in BS8110 or those described in 
Park and Gamble [11], chapter 2.11 should be followed. 
 
The calculation of Vt, the design shear transferred to the column, is also a matter of 
experience and judgement and the designer should bear in mind clause 3.8.2.3 in BS 
8110. This clause states that in braced monolithic construction, axial forces in columns 
may be calculated assuming slabs are simply supported. 
 
Where punching shear becomes critical the designer is referred to Regan [50] and to 
Chana and Desai [49]. Regan points out that flat slabs are generally too flexible to be able 
to transfer the high moments indicated by a linear element elastic analysis. Chana and 
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Desai [49] discuss how membrane action, which is usually ignored in design, may be 
taken into account to enhance punching shear resistance around internal columns. 
 

4.3.4 An example 
The following example is based on Figure 4.4, which is the part-plan of one storey in a 
seven-storey block of flats in London. The construction consists of a 250 flat slab throughout 
without any upstands or downstands supported on blade columns and R.C. walls around the 
core. Some of the patterns investigated are shown in Figures 4.5a and 4.5b.  
 
 

 

Figure 4.4  Part general arrangement drawing of a block of flats 

 
 

 

Figure 4.5a.  Part general arrangement drawing of a block of flats showing a ‘folding 
plate’ mechanism that needs to be investigated  
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There are various potential folding plate mechanisms. Presuming a constant udl across 
the whole slab, the pattern indicated in Figure 4.5a is likely to be critical as it has the 
largest ‘average’ span. Other folding plate mechanisms should be considered and some of 
these are shown in Figure 4.5b.      
 
The analysis for the folding plate shown in Figure 4.5a could range from simply 
considering it as a folding plate and using the formula in Table 3.1, to a more detailed 
Work Method analysis. 
 

 

 

Figure 4.5b.  Part general arrangement drawing of a block of flats showing some of the 
possible polygonal failure patterns that need to be investigated 

Patterns 1 and 10 assume slabs supported on three sides, the lines of 
support being the axes of rotation. Patterns 2, 3 4 and 8 assume four 
axes of rotation along lines of supports. Patterns 5, 6 and 7 are possible 
cantilever modes of failure. Pattern 9 is a straight line folded plate type of 
failure 

 
All the patterns in Figure 4.5b should be investigated. The various possible failure patterns 
shown give an indication of how a designer would approach the analysis of a slab of this 
kind. Calculations would typically be as the calculation for pattern 8 given in Example 4D. 

 

Pattern 1

Pattern 3

Pattern 4

Pattern 2

Pattern 5

Pattern 6

Pattern 7

Pattern 8

Pattern 9

Pattern 10
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Practical Yield Line Design 

Example 4D 
Irregularly supported flat slab using the Work Method 
Investigate pattern 8 in Figure 4.5b assuming n = 21.7kN/m2 and layout as follows: 
 

Slab layout :  
 

 

 
 Concrete C40 Cover 20 mm T&B Slab thickness 250 mm, n = 21.7 kN/m2  

Analysis  

 Pattern 8, is considered as a panel of a slab supported on four sides. Applying the Work method 
and choosing m = m′ 

 

 E = 7.85 x 8.25 x 21.7 x 1/3 = 469      

 D = 2 x 8.25 x m x 1/3.925 = 4.2m    

  2 x 7.85 x m x 1/4.125 = 3.8m    

  m′ x (8.25 + 6.75) x 1/3.925     =  3.8m′ = 3.8m    

  m′ x (7.85 + 6.85) x 1/4.125     =  3.5m′ = 3.5m    

    15.3m    
 From D = E , we get : 

   15.3m 469=  

   m 469 / 15.3 30.65 kNm/m= =  
Allow 15% increase : 
   m m 30.65 1.15 35.25 kNm/m′= = × =  

  

 
Commentary on calculation 

In practice a number of patterns, some of which are shown in Figure 4.5a and 4.5b, would be investigated and a worst 
case taken.  
 
Analysing the folding plate pattern, Pattern A, shown in Figure 4.5a using the work method, would have produced a 
moment of approximately 48.6 kNm/m, assuming the ultimate load to be 21.7 kN/m2 across the whole slab. The design 
moment would have been 48.6 x 1.15 = 55.8 kNm/m. In the analysis, the same principles as used in Chapter 2 are 
used: the yield lines obey the same rules. The exact pattern may be a little difficult to predict but there is some comfort 
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 4.3 Flat slabs on an irregular grid of columns: Example 4D 

in checking a number of patterns. As a rough check, it might be considered that failure in this bay is akin to a straight 
plate failure and by applying Table 3.1, case 1 with i1=0.66 and i2 = 1.00 and an ‘average’ L =5.6, an m of 46.6 kN/m 
(design moment, 53.6 kNm/m) would have been derived.  
 
At first glance, it might appear that pattern 8 would be the most critical of the potential large polygon failures. However, 
similar calculations to Example 4D for the all patterns indicated in Figure 4.5b (but using simple 45o layouts for the yield 
lines) produce the following results: 
 

Pattern no. 1 2 3 4 5 6 7 8 9 10 A 

m (kNm/m) 33.2 37.6 23.8 29.3 21.3 21.3 24.4 30.6 20.3 36.3 48.6 

1.15 x m (kNm/m) 38.1 43.3 27.3 33.7 24.5 24.5 28.1 35.2 23.4 41.8 55.8 

 

It will be seen that patterns 1, 2, 10 and A produced more critical results than pattern 8.  It will be noted that patterns 
1, 2 and 10 have discontinuous edges. Pattern 9 is a folded plate pattern but less onerous than pattern 8 shown in 
Figure 4.5b, because the span is relatively small. Other possible failure patterns involving other polygons should also be 
considered. However, the ‘m’ for pattern 2 appears critical and would, subject to consideration of other failure patterns 
across the whole slab be judged suitable to be the basis for reinforcing the whole slab. Obviously, the worst case, the 
folded plate pattern A would have to be accommodated by supplementing with additional top and bottom 
reinforcement. 
 
Local fan type modes of failure at column supports would be checked in the usual way, as would deflection and 
punching shear.  
 
In general, reinforcement consisting of T12 bars at 200 centres each way top and bottom giving a moment capacity of 
51.2 kNm/m would appear to be a sensible solution. The reinforcement in the more onerous panels would be 
supplemented with extra T12s at 200 centres.  
 
However, real slabs tend not to be so simple!  
 
Indeed, the analysis for the actual slab used as the basis for the above example had to cater for different uniformly 
distributed loads, line loads, holes, discontinuities etc, etc. Analysis included an exhaustive consideration of failure 
patterns over the whole slab and Figure 4.6 shows part of the resulting reinforcement drawing. The slab was considered 
as a whole and provided with T12 @ 200 each way top and bottom throughout (h = 250 mm: mr = 51 kNm/m). This 
arrangement catered for the design moments over most of the slab. 
 
Over most columns, additional top steel, in the form of T12 @ 200 T, was added locally to give effectively T12 @ 100 T 
to preclude local failures from occurring and to enhance punching shear resistance. Some of the columns had punching 
shear reinforcement added. In some panels additional T12 @ 200B were used to enhance moment capacity and to 
ensure the slab conformed with span-to-depth ratios. The cantilever balconies were reinforced with T12 at 100 centres.  
 
This level of rationalisation of reinforcement was considered appropriate for the desired level of buildability. In the 
event, fixing times were very quick and lead to considerable overall time savings  and therefore significant savings in 
costs over more traditional methods of reinforcing such slabs. 
 
As can be seen in Figure.4.6 the reinforcement is laid out in the direction of the longitudinal axis of the building and at 
right angles to it.  Normally, a panel would have reinforcement running parallel with the sides. This is not the case with 
panel 8 but with isotropic slabs, as this one is, provided the reinforcement in the two directions are at right-angles, the 
moment capacity of the slab is the same no matter what the orientation of the bars (see Appendix). 
 
The design of these slabs is not difficult. However, it does require thoroughness, confidence and judgement! 
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Figure 4.6. Extract from the actual reinforcement drawing for the slab used in Example 4D  
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4.4 Slabs with beams 
A valid yield line pattern may include yield lines that pass through beams. Including 
beams in the collapse mechanism of a slab is only a theoretical extension of the principle 
of providing localised strong bands of reinforcement within the depth of a slab. Consider 
the slab shown at the top of Figure 4.7. This slab has edge beams and the combination 
spans between two walls. A 45-degree load dispersion is shown as a mode 1 failure (this 
dispersion is really only valid if the four supports, i.e. the wall and beam supports, are 
regarded as being equally stiff). Other possible failure patterns are shown as modes of 
failure 2 to 5. 
 

 
 
 MB  = moment capacity of the beam with 100% reinforcement  

 MBr = reduced moment capacity of the beam due to curtailment of 
reinforcement 

Figure 4.7  Possible modes of failure for a slab supported by beams and walls 

 
As the supporting beams become less stiff, the points of the triangular regions in the mode 1 
failure pattern come together, meet and then flatten as they meet. Eventually, the beams 

Beams act as line supports
(assumed not to fail)

Simple support Simple support

Mode 1 failure

Axes of rotation

MBMB

MB

m
m m

Mode 2 failure

Beam does not fail

Mode 3 failure

MBr MBrMBrMBr

m m m m

MBr MBr Beam does not fail

Mode 5 failureMode 4 failure Unit deflection
in this area

(Slab alone fails)
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act more like strong bands either side of the slab leading to a mode 2 failure pattern. This 
composite slab now spans between the wall supports - the load being shared between the 
slab and the beams in proportion to their respective moments of resistance (c.f. elastic 
theory where they would be shared according to their stiffness). 
 
If both beams are of the same strength we get failure mode 2. If only one beam is weak 
then we can get failure mode 3. If the bottom main bars in the beam in modes 2 and 3 are 
curtailed too soon, reducing  the plastic resistance moment then an alternative failure 
pattern has to be investigated as shown by modes 4 & 5 respectively. 
 
Please note that between modes 1 and mode 2, the span of the slab has changed direction! 
This obviously has an impact on the serviceability design of the combined system. It may 
even become necessary to increase the slab thickness because of the change in span.  
 

4.4.1  Design procedure 
Taking the same layout of the floor as shown in Figure 4.7 the procedure for analysing 
this beam and slab structure would be as follows:  
 
First determine the minimum strength of the slab on the assumption that the beams are 
strong enough to act as line supports so that when the slab is loaded to failure only the 
slab fails, leaving the beams intact. This is shown as failure mode 1 in Figure 4.7. Then 
analyse patterns that involve the collapse of both the slab and the beams. Mode 2 will be 
of greatest interest, but if the reinforcement in the beams is to be curtailed or there is 
some other reason for the plastic resistance moment to be reduced then alternative 
failure patterns have to be investigated.  
 
In all these modes of failure the designer is free to choose any values of slab and beam 
strengths that satisfy the relationships imposed by the Work Method of analysis provided the 
slab strength is greater than or equal to that calculated for the collapse of the slab alone. 
 
It will be appreciated that part of the slab acts compositely with the downstand beam to 
form an inverted L-beam. When considering the plastic moment of resistance of the 
inverted L-beam, there must exist a length over which the neutral axis of the T-beam 
section reduces to that of the slab. M Kwiecinski [20] in his work on slab-beam systems 
says that the effective width of the compression flange should be taken from the relevant 
clauses in the Code of Practice one is working to. For an L-beam to BS 8110 (and EC2), 
this width is the web width plus 0.1 times the beam length between points of 
contraflexure.  Please note that the length of positive yield line in the slab excludes the 
width of the beam flange. 
 
If an accurate assessment of deflection is required then, the designer is recommended to 
apply finite element theory to tackle the problem. Otherwise, the designer must use his or 
her experience and judgement to assess whether deflection is likely to be critical by say 
checking span : depth ratios. 
 

 
 

 

B = Effective flange width of beam 

Figure 4.8  Section through slab and beams showing length of positive yield line in slab 
and beam flange width in a mode 2 failure. 

Length of positive
yield line in slab

0.1 x span of beam between 
points of contra flexure

B B
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Concrete C40 cover 20 T & B
n = 15kN/m2

2

1 1

200 x 600 dp beam

Wall support under end diaphragms

200  slab

200 x 600 dp beam

9000
2

4600

200

5000

200

SECTION 2 - 2

SECTION 1 -  1

200
400
600

Example 4E 
Two-way slab with beams using formulae (flexible beams) 

Analyse and design a pedestrian link bridge in an atrium consisting of two edge beams 200 × 600 mm deep and a 200 
mm slab, 5.0 m wide having a span of 9 m between two supporting walls. 
 
The total ultimate uniformly distributed load is 15 kN/m 2, concrete C40, cover 20mm T&B. 
 

Layout 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis and Design 
Failure Mode 1 (refer Figure 4.7).  

 Check slab and failure mode 1 – assume that the beams do not fail. 

 

 Assuming isotropic reinforcement and   i1 = i2 = i3 = i4 = 0 ,      

then with reference to Table 3.6a    
 

    ar = a = 4.8 ;   rb•  = b = 9.0 ;    n• = n = 15 

α  = β = 0 

 

 

i4

i1 i3

i2

m m
m

h1 =  3.09 h3=  3.09

b = 9

a = 4.8

On the assumption
that the beams do
not fail

Failure mode 1
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rr

r r

r r

n a b 15 4.8 9
m

9 4.8b a 8 18 1 4.8 9a b

• •

•

•

× × × ×
= =

   + + + +    

  

m = 23.8 kNm/m 

 

 

1 1
m 6 23.8

h 6(1 i )
n(1 3 ) 15

×
= + =

+ β
  

h1 = h3 = 3.09 m 

 

 Slab reactions on beams: 

q2 2
r r

1 1
4m 1 i

a b

1 1
4 23.8 30.4 kN/m

4.8 9

 
= + × + 

 

 = × + = 
 

 

 q2 = q4 = 30.4 kN/m 

 

 The ultimate moment in the beamTT: 
q 2

2 2

B

b 30.4 9
M 308 kNm

8 8

× ×
= = =  

 

   

 
 
 
 B = 0.1 x 9 + 0.2  

    = 1.1 m 

 

 6
2

cu 2

308 10
M/bd f 0.024

1100 530 40
×

= =
× ×

 ∴ z = 0.95d 

As req = 
308

0.95 0.53 0.438× ×
 = 1397 mm2 

Provide 2T25 + 2T20 

(982 + 628 = 1610 mm2/m) 

 

 
This will ensure that the beam will sustain the slab load 
without failing. However, check against failure mode 2. 

 

 
 
 
 
 
 

                                                       
TT For simplicity, use wl2/8 as per both Yield Line Analysis and Elastic Analysis. 

B

d = 530

70 200
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Failure mode 2.  
 Check failure mode 2 which embraces failure in both slab and beams: 

 
 Apply the work method to establish the required 'm' for the 

slab for this mode of failure to occur with MB chosen at 308 
kNm 

 

 

 

E:   15 kN/m2 x 9.0 x 5.0 x ½   =   338  

D : 

         

12 2.8m 1.244m4.5
14 308 274.04.5

1.244m 274

× × =

× × =

=∑ +

 

From D = E we get: 

  1.244m + 274 = 338 

338 274
m

1.244

m 51.44 kNm/m

−
=

=
 

 

 

[2θ rotation] 

[2 beams, 2θ rotation] 

 This mode of failure requires the slab moment of resistance to 
be 51.44, which is more than 23.8 of mode 1. Therefore this 
mode of failure would take precedence over mode 1 and the 
slab resistance moment in the longitudinal direction would 
have to be increased to 51.4 4 kNm/m. 

 

 However, the reinforcement provided in the beams has an area 
of 1610 mm2. This gives an MBr of  
1610 x 0.95 x 0.53 x 0.438 = 355, instead of the computed 
308 kNm. 

So substituting this value into D: 

 

 
12 2.8m 1.244m4.5

14 355 316.04.5

× × =

× × =
=

1.244m 316∑ = +

 

 

 From D = E we get: 

1.244m + 316 = 338 

 

 

MB

m

MB

4.5 4.5

1.1

2.8

1.1

5

Yield line

Flange width of beam

'm' acts only on 2.8m
of the yield line

Axis of rotation

Plastic moment of resistance of 
beam MB = 308 kNm
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338 316

m
1.244

−
=  

m = 17.7 kNm/m 

 

 As this moment is less than 23.8 of mode 1, this mode of 
failure will not take precedence due to the enhanced MBr of the 
beams. 

The slab will, nevertheless, have to be designed for the larger 
moment of 23.8 to prevent the slab failing on its own. 

 

Failure mode 3 
 By inspection, not critical  

Failure mode 4.  
 Investigate the effect curtailment of the beam bars can have 

on the ultimate moment in the slab. Try stopping off the 2T25 
bars 1.25 m from the supports each end: 

 

 

 The possibility of mode 4 failure pattern has to be 
investigated:  

 

 

 
 MBR = moment of resistance of the continuing reinforcement, 

(2T20 = 628 mm2) 

Conservatively, MBR = 355 x 628 / 1610  = 138 kNm 

 

 
 

1.25 1.25

2T25

9.0

2T20

Reduced flange width

3.6

0.7

0.7MBr

Moment of resistance
of continuing 2T20 bars

5.0 m m

MBr = 355 x    = 138kNm628
1610

MBrMBr

MBr

1.25 1.256.5

Unity

MBr & m MBr & m



 

 133

 4.4 Slabs with beams: Example 4E

 
 E :  

2

2

15kN/m 6.5 5 1 487.5

115kN/m 2.5 5 93.752

× × × =

× × × =
=

581.25∑ =

 

D :  

12 3.6m 5.76m1.25

14 138 442.01.25

× × =

× × =
=

5.76m 442∑ = +

 

From D = E we get: 

 5.76m + 442 = 581.25 

581.25 442
m

5.76
−

=  m = 24 kNm/m 

 

 Now this is approximately equal to the moment in the slab for 
mode 1, i.e. 23.8  

So one can conclude: 

• Curtailing bars more than 1.25 m from supports 
would initiate failure mode 4 with an increase of mode 
1 slab moments. 

• Curtailing the 2 T25 bars less than 1.25 m from 
supports would prevent mode 4 from developing and 
mode 1 would be applicable. 

 

For completeness: 
 Slab reinforcement 

d = 200 – 20 – ave 10 = 170 mm 
6

2
cu 2

24 10
M/bd f 0.021 z 0.95d

1000 170 40
×

= = ∴ =
× ×

 

2
s req

24
A 339 mm

0.95 0.170 0.438
= =

× ×
 

Min 0.13% = 0.0013 x 250 x 1000 = 325 mm2 

Provide T10 @ 200 both ways T&B (392 mm2/m) 

 

 By inspection deflection of slab and beams OK.  Top steel 
provided to reduce shrinkage creep and deflection. 

 

 Shear in beams 

 v  = 30.4 x 103 x 9 / (2 x 200 x 530) = 1.29 N/mm2 

100 As/bd = 100 x 628 / 200/ 530 = 0.59% 

vc = 0.624 

Asv/sv > 200 (1.29 – 0.62) / 438 = 0.306 

Provide T10 links in 2 legs @ 300 cc (0.52)  
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Summary 
 In slab, provide T10 @ 200 bw T&B (392 mm2/m)  

In beams, provide 2T25 + 2T20B (982 + 628 = 1610 mm2). 
Curtail 2 bars max 1.25 m from supports. Provide T10 links in 2 
legs @ 300 cc (0.52)   

 

 

Commentary on example 

The beams in this example were deliberately chosen to be flexible in order to emphasize the need to exercise caution in 
the design process. If the beams had been made 900 mm deep initially then the design would have been 
straightforward. 
 
The comment made earlier about deflections at service loads still apply and if there is not the time or the facility to 
revert to Finite Element Analysis then one should always seek to provide a generous span/depth ratio for the beams 
and, if necessary, also reduce the working stress in the reinforcement by providing more tensile reinforcement than 
would be required for ultimate design alone.   
 
This example clearly demonstrates how Yield Line Theory enables a designer to optimise the effectiveness of a 
structural layout. An experienced designer would recognize the need to concentrate the reinforcement in the slab in the 
direction of the span of the beams in order to enhance the performance of this beam-and-slab system. If therefore an 
orthotropic arrangement of reinforcement were chosen where the ratio of longitudinal steel was twice that of the 
transverse steel, the Yield Line Analysis for failure mode 1 would produce a moment of 37.2 kNm/m in the long direction 
and 18.6 kNm/m in the short direction. If we then chose to reinforce the beam with only 3 T25 (1473 mm2) as opposed 
to the 1610 mm2 this would give the beam a moment of resistance of 331 kNm. The Work Method for failure mode 2 
would then require a slab moment of 35.37 kNm/m which is less than 37.2 kNm/m provided by mode 1 so that mode 2 
would not be critical. 
 
The purpose of providing top reinforcement throughout the slab is to reduce long-term creep and shrinkage deflections.  
It is not in this case a design requirement. 
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4.5 Transfer slabs 
The most economic form of vertical structure is to have all vertical load-bearing elements 
located above each other so that there is a direct path for all the loads down to the 
foundations. When this cannot be done, for instance when office grids do not coincide 
with ground or basement car-parking layouts below, then some form of transfer structure 
is required. The transfer of load can be achieved by a system of transfer beams, which 
are costly and time-consuming to design and construct. Where the loads to be transferred 
are spread over a large area it becomes more economic to transfer the load by using a 
flat slab. 
 
Again Yield Line Theory can be applied to give simple solutions for these types of slabs. 
The Yield Line Analysis will follow the same Work Method procedure as before. The only 
difference is that the analysis must deal with substantial point and/or line loads: in 
comparison, any uniformly distributed load at that level will be comparatively small.  
 
The yield line pattern for global failure will be attracted towards these isolated loads. 
When there is a dominant point load present, there is the necessity to check whether a 
local failure under this load will not produce a larger moment.   
 
When there is a combination of loads, as is generally the case for transfer slabs, it is 
useful to know that although the law of superposition is not valid.  Nonetheless in Yield 
Line Theory can be used.  It will always be on the safe side to find the solutions for the 
loads acting independently and then add these resulting moments together to give a final 
design moment. The moment arrived at in this way will always be greater than the correct 
moment that would have arisen due to the loads acting together. The key to how 
accurate the resulting moment is depends on how divergent the individual yield line 
patterns are. The more divergent these patterns are from each other the less accurate the 
result i.e. the greater the conservatism. For example a circular slab supported around the 
perimeter and loaded with a central point load and a uniformly distributed load will 
produce the same final moment whether analysed for the combined loads or for them 
separately and then added together. This is because the crack pattern is exactly the 
same. 
 
The very nature of this type of slab, supporting substantial point loads and/or line loads, 
will demand a lower span/depth ratio not only for the serviceability considerations but also 
with respect to the higher shear loads generated. 
 
For the interested reader this topic is covered in detail in references[14] and [16]. 
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4.6 Raft foundations 
Yield Line Theory provides a simple method of designing raft foundations, either ground-
bearing or piled, which will be adequate in the majority of cases encountered in practice. 
Sophisticated theories and computer programs for the design of complex raft foundations 
do exist. They can take into account soil/structure interaction and for buildings that warrant 
this approach, the designer would be justified in pursuing that line of action [27,28]. 
 
Here, it is not intended to enlarge upon how the loading on the rafts was actually arrived at but 
to concentrate solely on how Yield Line Theory is used to analyse a raft with given loading. 
 
Foundation rafts come in the same shapes as floor slabs, the only difference being that 
they are loaded by the reactions in the ground, brought about by the load of the structure 
the rafts support. In this respect they may be considered as inverted floor slabs and may 
be designed as such. Unlike elastic methods, plastic and Yield Line methods are 
independent of deformations, deflections, movements or settlements. Rather than factor 
up a serviceability limit state case, Yield Line methods consider the ultimate limit case 
from the outset. Serviceability is usually a matter of soil/structure interaction and is 
beyond the scope of this publication. 
 
In principle, there are two types of raft foundations, those resting on soil and those 
resting on piles. In the former, the load on the raft is considered to be distributed linearly 
depending on the eccentricity of the resultant load with respect to the centre of gravity of 
the raft itself. However, Johansen [6] showed that an excellent approximation of the 
ultimate moments can be achieved by considering the same total load but uniformly 
distributed. In piled rafts, the piles represent a series of point loads on the slab. The 
magnitude of these point loads would have been established previously from the elastic 
foundation design, but factored to give ultimate loads. 
 
When embarking on a raft design, the first step is to identify the main vertical load-
bearing elements of the structure that transfer the bulk of the load of the building and its 
contents to the foundation. These columns and walls will become the support system for 
the design of the raft as an upside down slab. Any other vertical elements that support 
only a relatively small part of the total load should be treated as line or point loads acting 
against the upward soil reaction (and would therefore constitute a relieving load on the 
raft subject to the appropriate partial safety factor for relieving load).  
 
There is a definite advantage in having concrete walls as a means of transferring loads to a 
raft as they provide extra rigidity and also help in reducing the magnitude of the applied 
moments and shear forces. Isolated column supports have to be checked for punching shear. 
Once the ultimate loads on the raft have been established the Work method of analysis 
can be applied to determine the design moments. When applying the Work method, any 
gravity loads acting on the raft are taken as negative in the procedure for evaluating the 
expenditure of external forces.  
 
The sizing of foundation rafts is very much a matter of experience and is influenced by 
soil conditions and the rigidity of the structure it supports. A good indication of whether 
the raft is thick enough to perform satisfactorily is given by the amount of reinforcement 
that is needed to comply with the design moments. The opinion on what this maximum 
amount should be is somewhat subjective but from the main author’s experience this 
would be in the region of 0.4% to 0.5% T&B both ways.  
 
The thickness of rafts can also be influenced by considerations of punching shear, notably if the 
raft is supporting edge columns. Some designers like to avoid punching shear reinforcement, but 
some flexibility in rafts is desirable to keep bending moments and shear stresses to a minimum. 
However, flexibility must be related to the allowable distortion in the superstructure [27].  
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Example 4F 
Piled raft using the Work Method 

Example 4F is taken from a building in London and shows the analysis and design of a 600 mm thick piled raft 
supporting a seven-storey building (including basement).  
 
Figure 4.9 shows the plan layout of the basement at raft level. The solidly shaded walls are the walls that continue up 
the building to support the floors and therefore also provide line support to the raft. The hatched walls support only the 
ground floor and will therefore form line loads on the raft. Some of the possible failure patterns to be investigated are 
shown here. By inspection pattern 2 is likely to be critical and details of this area including possible yield line patterns, 
dimensions and loads in piles and walls are shown in Figure 4.10. 
Undertake the analysis and design for pattern 2a. 
 

 

Figure 4.9  General arrangement of basement and raft foundation showing possible yield line failure patterns. 

The lift pit was cast monolithically with the raft to ensure the negative yield lines assumed in the analysis 
were valid.. 
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Figure 4.10  Detailed arrangement of raft with respect to failure pattern 2a 

NB This area enlarged and rotated through 900 with respect to Figure 4.9. 
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D

CA

B

m

m' = 0

m' = 0

m' = 0

3.8 4.5

8.3

Isotropic reinforcement

5.1

2.3

5.0

12.4

m' = m

Layout 
 Pattern 2a: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Data 
 Raft 600 mm thick slab, self–weight 15 kN/m2 

Concrete C40.    Cover 50 mm T&B 

The pile loads shown in Figure 4.10 are working loads derived 
from the loading imposed on the raft by the super–structure. 
In the analysis, they are factored by 1.5 to bring them up to 
ultimate loads. 

The line loads shown are also working loads. These and the 
self–weight of the raft are relieving loads and therefore not 
factored.. 

 

Applying the Work method applied to pattern 2aUU 

 E  = Expenditure of external energy by the loads i.e. the 
summation of ultimate pile loads multiplied by displacement in 
each regionVV 

 

 
 

                                                       
UU If the piles had been evenly spaced at about three diameter centres it would have been possible to work instead with an 
equivalent uniformly distributed load with little loss of accuracy.  Dealing with point loads is labour intensive and requires 
complete setting out of details in order to evaluate the expenditure of energy for each individual pile. Unfortunately, in this 
case, circumstances did not permit an even distribution of piles. 
 
VV In the evaluation of E (expenditure of external energy by the loads) all the piles are multiplied by a factor of 1.5 to convert 
working loads to ultimate loads. Each pile load is multiplied by the ratio of its distance from the axis of rotation relevant to the 
region it was in, and to the point of maximum deflection in order to establish its proportion of unit movement. 
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E      =  

Region A: 

 

 

11.5 269 kN 0.9 95.63.8
11.5 293 kN 0.9 104.13.8
11.5 322 kN 0.9 114.43.8

× × × =

× × × =

× × × =

 

11.5 342 kN 0.9 121.53.8
11.5 306 kN 2.6 314.13.8
11.5 388 kN 2.9 386.93.8
11.5 314 kN 1.8 223.13.8
11.5 320 kN 2.9 366.33.8

× × × =

× × × =

× × × =

× × × =

× × × =

 

 

+ Region B: 11.5 359 kN 0.9 95.05.1
11.5 374 kN 2.0 220.05.1
11.5 390 kN 0.9 103.25.1
11.5 392 kN 1.7 196.05.1
11.5 340 kN 0.45 45.05.1
11.5 350 kN 0.45 46.35.1

× × × =

× × × =

× × × =

× × × =

× × × =

× × × =

 

 

 

+ Region C: 11.5 477 kN 3.4 540.64.5
11.5 323 kN 1.55 166.94.5
11.5 331 kN 3.4 375.14.5
11.5 334 kN 3.4 378.54.5
11.5 335 kN 0.85 94.94.5
11.5 342 kN 0.85 96.94.5
11.5 346 kN 0.85 98.04.5
11.5 349 kN 0.85 98.94.5

1.5 369

× × × =

× × × =

× × × =

× × × =

× × × =

× × × =

× × × =

× × × =

× 1kN 1.55 190.74.5
11.5 350 kN 0.7 81.74.5

× × =

× × × =

 

 

 

+ Region D 11.5 283 kN 1.7 144.35
11.5 328 kN 0.45 44.35

× × × =

× × × =
 

 

          Sum of positive values ∑ = 4742.3  
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 4.6 Raft foundations: Example 4F

 
 

 Uniformly distributed loadsWW  

 2

2

115 kN/m 10.1 8.3 419.23
115 kN/m 12.3 8.3 143.22

− × × × = −

− × × × = −
 

 

– Line loads: 1115 kN/m 2.6 2.55 200.63.8
162 kN/m 1.3 0.65 10.35.1
1115 kN/m 0.2 3.2 14.75

154 kN/m 3.9 2.7 126.64.5
195 kN/m 3.9 1.15 112.14.5
162 kN/m 5.1 1.15 95.74.5

− × × × = −

− × × × = −

− × × × = −

− × × × = −

− × × × = −

− × × × = −

 

 

             Sum of negative values ∑ = – 1122.4 

 

 

 
   E.= 4742.3 – 1122.4 = 3619.9  

D =  

112.4m 3.26m3.8
18.3m 1.63m5.1
18.3m 1.66m5

12 12.4m 5.51m4.5

× =

× =

× =

× × =
=

12.06m∑ =

 

 

 From D = E we get: 

12.06m = 3619.9 

 
3619.9

m
12.06

=   

 m = 300.16 kNm/m (for pattern 2a) 

Similar analyses were carried out on patterns 2B and 2C, but 
pattern 2A was found to be more critical. 

 

 

                                                       
WW Because the raft is considered to be an inverted slab loaded by the individual piles that produce positive work, all the gravity 
loading i.e. the self-weight of the raft and the line loads from internal walls, give rise to negative work 
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Practical Yield Line Design 4.6 Raft foundations: Example 4F

 
 

Design 

 Patterns 1 and 3 were analysed in a similar way to give the 
following results: 

Pattern 1 217.94 kNm/m 

Pattern 2a 300.16 kNm/m 

Pattern 3 275.62 kNm/m 

As pattern 2a is most onerous design raft forXX: 

 m = 300.16 x 1.1 = 330.2 kNm/m 

 

 

 

 

 6
2

cu 3 2

330.2 10
Mbd f 0.03 z 0.95d

10 525 40
×

= = ∴ =
× ×

 

q
2

s re
330.2

A 1512 mm /m
0.95 0.525 0.438

= =
× ×

  

 

 

 Provide T25 @250 cc (1964 mm2/m) each way T&B throught  

                                                       
XX As described earlier it is usual to increase moments by 10% to allow for an adverse pattern forming, etc. 

600 d = 525

75
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4.7 Refurbishments 
Yield Line Theory can be employed very successfully whenever alterations to existing 
reinforced concrete floor slabs are contemplated. In essence, the Work method of analysis 
is applied in the usual way. Whenever a new use is required the main question that arises 
is “What is the load capacity of the new slab”? However, as the moment capacity of the 
existing slab is known, or can be determined from drawings, surveys and /or 
investigations, the unknown, to be determined by calculation, becomes the load capacity.  
 
Once a failure pattern has been postulated, the Work Method is used. The external energy 
expended, E, becomes a function of the ultimate load the floor can sustain. The 
dissipation of internal energy, D, is based on the ultimate moments of resistance of the 
slab. The method can be used to determine load capacity, or spare load capacity, of a 
slab in both its existing state and its proposed new state.  
 
Ideally, general arrangement and reinforcement detail drawings of existing slabs will be 
available. If this information is not available or if there is concern about the reliability of 
the record drawings, then surveys, reinforcement surveys using cover meters, and 
investigations, such as uncovering reinforcement or taking cores, can be made to verify or 
establish size, type and spacing of reinforcement and concrete strength. 

 

4.7.1  Holes 
One of the most common requirements of refurbishment works is the requirement to cut 
holes in existing slabs. Holes tend to attract yield lines. 
 
When investigating such a slab, it is best to first draw the failure pattern assuming that 
the hole has no influence on the shape and geometry of the pattern. Then the pattern is 
moved towards the hole ensuring that none of the basic rules associated with the forming 
of failure patterns as set out in Section 2.2.6 are violated.  
 
Care has to be exercised when evaluating the dissipation of energy along the yield lines 
when assessing the contribution of the reinforcement crossing the yield line near the hole. 
Where bars have been cut and the anchorage is less than full, the bars cannot contribute 
fully to the calculated moment capacity. These bars are best ignored in the calculations 
and this is most easily achieved by assuming the affected length of yield line in the 
relevant direction has zero strength. 
 
Edges of holes can also attract line loads from stairs or partitions, etc. In the case of a 
new opening being formed for a stair, the reaction of the flights will impose a line load on 
one side of the opening. This line load has to be taken into account when working out the 
expenditure of external loads.  
 
In this context it has to be said that small isolated holes for pipework etc. are usually 
ignored, as they are not large enough to attract yield lines. If, however, they happen to 
be situated in the natural path of a yield line then, when evaluating the dissipation of 
internal energy along that yield line, the length of line must be reduced by the hole 
dimension. 
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Practical Yield Line Design 

Example 4G 
Hole in two-way slab using the Work Method 

An existing 250 mm thick concrete slab measuring 7.0 x 9.0 m is simply supported on all four sides and is to have a hole 
2.0 x 2.0 m formed at the location shown in Figure 4.11. It carries finishes weighing 1.5 kN/m2. The concrete has been 
established as being C30 and drawings show that the reinforcement in the shorter direction consists of T12 @ 150 cc 
bottom and T12 @ 300 cc in the other direction. The cover is 20 mm. 
 
The task is to establish what live load the slab with the hole can safely sustain.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11  General arrangement of existing slab with proposed hole  

 

Layout 
 For layout see Figure 4.11 for details  

Parameters 

 LOADING: 
Dead load: 250 slab   

Finishes   

 
0.25 x 24 

 
= 6.0 

= 1.5 

   7.5 kN/m2 

 

 Moment of resistance: 

  dave = 250 – 20 – say 12 = 218 

 T12 @ 150 cc: m = 754 x 0.95 x 0.218 x 0.438 =  
m = 68.4 kNm/m  

T12 @ 300 cc:
 m 377 0.95 0.218 0.438 34.2 kNm/mµ = × × × =  

 

 

2 x 3m hole to be
cut into slab

250 sl
ab

T12 @ 300

m T1
2 

@
 15

0

µm

3.0

9.0

7.0

2.0

250 d = 218

32
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 Refurbishments: Example 4G

 
 

 

Figure 4.12  Possible failure pattern ignoring hole 

 

1) Establish 'n' for original slab 
 With reference to Figure 4.12: 

E =  

n kN/m2 x 6.3 x 7 x 1
3  = 14.7n 

n kN/m2 x 2.7 x 7 x 1
2  = 9.45n 

                      ∑ = 24.15n  

 

 D = 

 2 x 9m x  1
3.5  = 5.14 m 

 2 x 7µm  x 1
3.15  = 4.44 µm 

i.e 

 5.14 x 68.4 = 351.6 

 4.44 x 34.2 = 151.8 

                      ∑ = 503.4  

 

 

 

From D = E we get: 

  24.15 n  = 503.4 

  n  = 
503.4
24.15

 = 20.8 kN/m2  

 

 For this crack pattern the hole does not interfere with the 
Yield Lines.  So 'n' does not changeYY. 

 

 
 

                                                       
YY  If gk = 0.25 x 24 + 1.5 = 7.5, and no adverse pattern factor, then pkallowable= (20.8 – 7.5 x 1.4) / 1.6 = 6.43 kN/m2 

3.0

9.0

7.0

2.0

3.0 3.0

Pattern for slab
without hole

3.15 3.152.70

m
µm

3.5

3.5
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Practical Yield Line Design 

 

 

Figure 4.13 Possible failure pattern with hole 

The pattern in Figure 4.12 has been ‘attracted’ to the hole. 

 

2) Establish 'n' when pattern is drawn towards the hole: 
 With reference to Figure 4.13: 

E = 

n  x 6 x 7ZZ x 1
3 = 14.0n  

n  x 3 x 7AAA x 1
2 = 10.5n 

     24.5n∑ =  

 

 D = 
       2 x 6.6BBBµm x 1

3 = 4.4 µm 

   1 x 6m x 1
5 = 1.2m 

   1 x 6m x 1
2 = 3.0m 

 

 From E = D we get: 
 24.5 n  = 4. 4 µm + 4.2m 
  = 4.4 x 34.2 + 4.2 x 68.4 

 

   = 437.8  

                                                       
ZZ The area of the hole has been included. The reason for including the load within the hole area is that any future 
reinstatement would not alter the slab capacity. 
AAA The area of the hole has been included. The reason for including the load within the hole area is that any future 
reinstatement would not alter the slab capacity. 
BBB As the yield line gets close to the hole, the reinforcement in the µm direction has incomplete anchorage. Therefore an 
allowance is made for what is assumed to be an ineffective length of yield line.  

3.0

9.0

7.0

2.0

µm
m5.0

3.03.0

0.50.5

0.4m       
Ineffective
length of
yield line

* *

* Minimum anchorage required
   for longitudinal steel

2.0
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 Refurbishments: Example 4G

 
 

 
Thus 2437.8

n 17.9 kN/m
24.5

= =  
 

 i.e. this pattern has a lower failure load.    

 Applying the 10% rule for an adverse pattern forming the 
allowable design load is 17.9/1.1 ≈ 16.3 kN/m2 

 

 
As 

2

n 1.4 g 1.6 p

16.3 1.4 7.5 1.6 p

16.3 14 7.5
p 3.625 kN/m

1.6

= × + ×

= × + ×

− ×
= =

 
 

 The slab with the hole can sustain a live load of 3.625 kN/m2  

 
Commentary on calculations 

By moving the crack pattern towards the hole, as shown in Figure 4.13, there has been a reduction from 20.8 to  
17.9 kN/m2 (14%) in the failure load. This is a comparatively small price to pay for accommodating a hole of this size.  
 
It is usual not to subtract the load over the hole in case it is filled in again some time in the future. 
 
 

I 
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5.0 Case studies 
One Warrington Gardens, London W9 
 
 

Figure 5.1  This is a multi-storey block of luxury flats with two levels of basement car 
parking. 

There are eight large flats to each floor varying in size and plan shape.  

In order to give the architect complete freedom in the layout of each flat, r.c. blade 
columns were hidden within the dividing walls. This produced an irregular layout of 
supports for the r.c. flat slab floor that was 250 mm thick with spans in the order of 8 m. 
Yield Line theory was used to design these floors. Care was taken to locate the columns 
in positions to promote two-way modes of failure so as to reduce design moments and 
deflections.   

Yield Line Theory was also used for the design of the transfer slab at ground floor level 
and the folded plate ground bearing raft foundation. 

 

Client:  Pal Properties Ltd. 

Contractor: Wiltshier Construction (London) Ltd. 
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43-47 St John’s Wood Road, London NW8 
 

 

 

 

 
 

Figure 5.2  When first conceived these luxury flats had no engineering input and a 
column layout had to be found that was in sympathy with the dividing walls and partitions 
at all levels. This resulted in a very irregular layout of blade columns concealed in the 
walls in order not to project into the usable areas.  A solid 
250 mm thick reinforced concrete flat slab was chosen to 
deal with the varying spans and large semi-circular 
balconies projecting over 2 m beyond the face of the 
building. 
 
The slabs in the superstructure, the transfer slabs and the 
raft foundation were all designed using Yield Line Theory. 
The flat slab philosophy enabled the contractor to use 
very simple formwork on a repetitive basis. 
 
Client:  Pal Properties Ltd. 
Contractor: Wiltshier Construction(London) Ltd. 
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Onslow House, Saffron Hill, London EC1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3  This project was a major refurbishment of a reinforced concrete framed 
warehouse building that dates back to 1933. It featured flat slab construction with drops 
and mushroom heads to columns.   
 
For the conversion to luxury flats, extensive alterations were required in the form of cutting 
new openings, cutting away existing shaft walls and filling in the redundant holes. Yield Line 
Theory was used to assess the capacity of the floor to take new loads and take account of 
new openings. Its use lead to considerable savings in cost and time compared with design 
using more conventional methods. 
 

The original budgets had envisaged the need to break out 
and recast large areas of slab. However, this proved 
unnecessary as the yield line analysis showed adequate 
reserves of strength to incorporate the vast majority of the 
required changes.   

 
Three storeys were added to the top of the building. The 
columns in the extension are supported on a transfer slab 
that was cast using the existing roof slab as permanent 
formwork. The design of the transfer slab and the flat slabs 
to this addition was also carried out using Yield Line Theory. 

 
Yield Line design was used to demonstrate that the raft 
foundations could accommodate both the major 
refurbishment and the three-storey extension without any 
alterations to the foundations whatsoever. 

 
Client: Loft Ltd. 
Contractor Sindall Construction Ltd. 



 5.0 Case studies   

 151

Nokia Headquarters, Stanhope Road, Camberley 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4  This project was constructed as the European Headquarters and central hub 
for Nokia. The building is a three-storey structure with two suspended reinforced concrete 
floors, covering a plan area of 54 by 54 metres. The columns are on a grid of 
approximately 9.5 m by 9.5 m supporting an r.c. waffle floor slab 450 mm deep overall. 
 
The slab was designed as a flat slab structure using the Yield Line Theory. Solid areas 
were formed at column locations to accommodate top steel concentrations for the 
negative moments and for punching shear considerations. 
 
Straight-line failure patterns were considered in both directions and the local failure 
patterns were used to design the reinforcement at perimeter supports and as a check 
against a local failure occurring at internal supports. 
 
Client:  Nokia  plc. 
Contractor: Byrne Bros. Ltd. 
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East India Dock Redevelopment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5  Four office blocks of 8 to 11 storeys make up this 1 million square feet 
development in London’s Docklands. All the buildings consist of an in-situ concrete frame 
made up of a flat slab and columns.  
 

Yield Line Theory was used throughout in the design of the flat 
slabs. Due to the simplicity of the reinforcement layouts and 
the amount of repetition of bar lengths the contractor was able 
to use purpose-made mesh sheets made from high yield 
reinforcement to his advantage and thereby save time on the 
critical path. 

 
Some 55,000 cubic metres of concrete and 7,500 tonnes of 
reinforcement were used. 

 
Client:                   NCC Property Ltd. 
Contractor             Birse Construction Ltd. 
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66 Buckingham Gate, London SW1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6  This £5 million project was located on a city centre triangular shaped site 
with two sides adjacent to busy London streets. The proposal called for a multi-storey 
office complex plus a two-level basement structure. Yield Line analysis was used 
extensively in the design of the triangular in-situ concrete flat slabs , together with the 
raft foundation.  
 
The thin solid concrete slabs with no downstands gave the greatest possible freedom of 
movement for services and were particularly helpful to the architect in complying with the 
onerous conditions imposed by the Planning Authorities on building heights.  
 
To assist fast construction on this congested site prefabricated reinforcement cages and 
mats were extensively used. 
 
Client:  Charter Group Developments plc. 
Contractor Alfred McAlpine Construction Ltd. 
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80 Oxford Road, High Wycombe 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7  This prestigious commercial 
development incorporated the construction of 
a multi-storey office block with a link to a 
separate multi-storey car park. Yield Line 
Design was used for the flat slabs used in both 
of these blocks.  

 
Yield Line Design is particularly suited to 
rationalised methods of reinforcing slabs. The 
reinforcement for this design was achieved by 
using the Bamtec System. This involves 
prefabricating one-way mats of reinforcement, 
which are rolled out into position like a carpet 
in each direction. Loose bars are then added 
to fill any gaps that might occur. The 
contractor chose the system to speed up the 
construction cycle. 

 
Client:               Salmon Developments Ltd. 
Contractor:        Dove Bros / O’Rourke. 
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6.0 Summary 
Yield Line Design is a robust and proven design technique. It is a powerful and versatile 
and challenges structural designers to use their skill and judgement.  Whilst some of the 
terms and ideas may at first be unfamiliar, the rewards are simple, engineered designs 
that benefit everyone in the supply chain.   
 
Yield Line design leads to least cost, least weight, best value solutions – and great 
opportunities. 
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7.2.1  Recommended reading 
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Appendix 
Proof of formula 

In Table 3.1, One-way spanning slabs, the following standard formula appears: 
 

( )
2

2

1 2

nL
m

2 1 i 1 i
=

+ + +
 

 
It is the basis for all the cases in Table 3.1 and may be proved from first principles using 
the Equilibrium method as follows: 
 
 

 

 
 
Lr is the so called 
‘reduced span’ of 
a simply 
supported slab 
giving the same 
span moment m 
as the continuous 
slab. 
 
We can then 
write: 
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For Region 1 we get: 

Moment of external loads about support:  2
1nx / 2=  

Sum of the moments in the yield lines:    = m + m1’  

Equilibrium gives:     
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Similarly for region 2 we get:    r 2 2L 1 i 2x+ =  

 

          But  1 22x 2x 2L+ =   

           so             r 1 r 22L L 1 i L 1 i= + + +  

            &    ( )r 1 2L 1 i 1 i= + + +  

            r
1 2
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1 i 1 i
∴ =

+ + +
 

          As   

               
( )

( )

2
r

2

2

1 2

2

2

1 2

nL
m

8
n4L

8 1 i 1 i

nL

2 1 i 1 i

=

=
+ + +

=
+ + +

 

 
 

Other methods 
Besides the Work Method and formulae given in this publication, there are several ways to 
apply Yield Line Theory: 
 

The Equilibrium Method of analysis  

This method of analysis is really the Work Method presented in another form. Its principal 
use is in combination with the Work Method to show the designer which way to move the 
chosen layout of a valid yield line pattern in order to get closer to the correct solution.  
 
In the Work Method, the work equation encompasses the whole slab giving a single value 
for the moment in the slab. The Equilibrium Method investigates each region 
independently and separate values of moment for each region are obtained. The designer 
can deduce from these values which way to move the yield line pattern in order to make 
the values equal and find the yield line solution. When the values are equal the Work and 
the Equilibrium Methods give identical results. 
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Example A1 

 Panel A  D = E 

        2 x 7.5 m = n x (7.5 x 5.0 /2) x 5.0 / 3 

               15m = 31.25n 
              m = 2.08n 

 
 Panel B   

  
2 2 25 3 3 3 3

9.0m n x 1 x x
2 3 2 2 3

 
= × + + 

 
        m = 1.83n 

 
 Panel C   

  
27.5 3

7.5m n
2 3

= × ×            m = 1.50n 

 
 Panel D   

          
2 2 25 4.5 4.5 3 4.5

2 9.0m n x 1 x x
2 3 2 2 3

 
× = × + + 

 
        m = 2.06n 

For the exact solution, all panels should balance. In a second iteration, panels A 
and D would need to be slightly reduced. However if the variation is less than 20% 
then a mean can be taken.  
Mean m = 1.87n 
 
Therefore m = 1.87 x 20 kN/m2 = 37.4 kNm/m 
 
This compares to the solution of m = 36.93 kNm/m in Example 2A and  
m = 38.1 kNm/m using the exact method and formulae. 
 

 
The Equilibrium Method considers nodal forces at the junction of yield lines or slab edges 
to maintain equilibrium of regions with the externally applied loads and the moments 
along yield lines. It is beyond the scope of this publication to go into any more detail 
about the application of this method of analysis. The interested reader is referred to Wood 
& Jones [14] for a detailed coverage of the subject and to Kemp, Morley, Neilsen, Wood & 
Jones [37] for further developments in this field. 
 

7.50

4.50

3.0

9.0

5.0
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n = 20kN/m2

i = 1
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Hodograph method [46]  

Energy dissipated is evaluated by projecting the yield line in turn onto lines perpendicular 
to the reinforcement. The energy dissipated is: 
 Σ(moment/unit width  
    x projected length of the yield line  
    x projected rotation in the line considered)  
 
for all yield lines and for all sets of reinforcement. Energy expended is Σ(load x distance 
moved) 
 
Although this method is often analogous to projecting onto axes of rotation, it benefits 
from being able to deal with orthotropic reinforcement, skew reinforcement and several 
layers or directions of reinforcement without special measures such as affine 
transformations. It depends on having low areas of reinforcement. 

 
The solution may be checked by drawing vectors, indicating moment, length and 
direction, in a hodograph and ensuring that the vectors close. 
 

Automated Yield Line Design  

Automated yield line design may be accomplished by using a triangulated mesh, where 
the sides of the triangular areas are treated as potential yield lines [47].  The laws of 
equilibrium are used to relate the moment along each edge to the applied loading.  The 
edge moments are also prevented from exceeding the plastic moment of resistance in 
either hogging or sagging.  The load factor (or resistance moment) and yield pattern by 
which the slab will collapse may then be obtained by employing the equilibrium and yield 
constraints in conjunction with an iterative technique known as linear programming.  The 
technique is ideally suited to computer application and can readily accommodate non-
uniform loading or reinforcement arrangements. 

 
If the moments at the nodes of the triangular mesh are taken as the unknowns, and it is 
assumed that moments vary linearly over each triangle, then it follows that the nodal 
moments will be peak values.  By restricting these nodal moments to be below the plastic 
moment of resistance, and again adding equilibrium conditions, the linear programming 
technique will now produce a lower bound solution [48].  This compliments the upper 
bound result obtained from the edge moment type of approach.  A lower bound solution 
has the advantage of being safe, although it may be rather conservative on occasion and 
does not result in a yield line pattern.  A contour plot of the predicted collapse mode may, 
however, be generated. 
 
The upper and lower bound automated methods have been applied to Examples 3E, 3F, 
3G, 4D, 4F and 4G.  In each case, the upper and lower bound solutions were either side 
of the values derived from the hand methods given in this publication.  The average 
spread between the upper and lower bound resistance moments generated was 16% with 
a greatest spread of 20% and a lowest of 6%. 

 

Isotropy: moment capacity and orientation of 
reinforcement 

With isotropic slabs, provided the reinforcement in the two directions are at right-angles, 
the moment capacities in the slab are the same no matter what the orientation of the bars, 
or direction considered. 
 
This is borne out by the relationship between two sets of bars at right-angles in the ‘x’ and 
‘y’ directions, crossing a yield line which is at an angle φ with one of the bar directions. If 
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we attribute the value mx to the bars in the ‘x’ direction and my to the bars in the ‘y’ 
direction, then the value mn of the bars crossing the yield line at right-angles will be : 

mn = mx cos2φ + my sin2φ 

In the isotropic case where mx = my  = m, we get : 

mn = m cos2φ + m sin2φ = m (cos2φ +  sin2φ) = m 

Whenever mx is equal to my i.e. isotropic reinforcement, the resulting moment is always m  
whatever the orientation of the sets of reinforcement are in relation to the yield line. 

 

Johansen’s deflection formulae 
Johansen [6] saw little point in making particularly accurate deflection calculations – he felt 
it was more important to understand its order of magnitude. One reason he cited was the 
variation in concrete’s modulus of elasticity. For the sake of explanation and to provide 
designers with an ‘order of magnitude’ check on other methods, his formulae for one-way 
and two-way and flat slabs are given here. 
 
One-way and two-way slabs  

Johansen showed that by a suitable choice of a One-way strip taken out of any slab with a 
uniformly distributed load, restrained or simply supported, and analysed using the yield line 
theory, the deflection, u, could be estimated by the formula: 

 
2

servm L
u

8EI
=  

  
Where  

servm  is the maximum serviceability span moment in the slab [kNm/m]. This can be 
taken as being equal to the plastic yield line moment divided by the global 
safety factor. The strip containing this moment must be chosen to coincide with 
the location where the maximum elastic moment is likely to act. In the case of 
rectangular slabs the strip will be orientated parallel to the shorter sides. 

E is the modulus of elasticity of concrete. E should include for long-term effects, 
such as creep and shrinkage. (kN/m2) 

I is the Section moment of inertia([m4). It should be noted that Johansen used 
gross concrete section properties ignoring reinforcement and the possibility of 
cracked section, i.e. I = bd3/12. Practitioners may apply a factor to allow for 
cracking and cracked section properties. 

 
Flat slabs 

Johansen suggested that the deflection, u, could be checked on a diagonal strip: 

( )( )2 2
2 2s 0 s
x y

m L m
u L L 2c

8EI 8EI
= = + −  

Where 

sm  is the larger of the serviceability moments in the two directions xm  or ym  [kNm/m] 

x yL ,L  is the span in the two directions x and y [m] 

E is the modulus of elasticity of concrete. E should include for long-term effects, 
such as creep and shrinkage. [kN/m2] 

I is the section moment of inertia [m4]. It should be noted that Johansen used 
gross concrete section properties ignoring reinforcement and the possibility of 
cracked section, i.e. I = bd3/12 

0L  clear span between columns diagonally across the bay 
2c dimension from edge of column 1 to its centre line plus dimension from edge of 
diagonally opposite column 2 to its centre line [m] 



 Appendix 

 165

Deflection: redistribution coefficient, βb 
When designing a slab at the ultimate limit state using Yield Line theory, it is usual to check 
deflection using span/depth ratios. The redistribution coefficient, βb, is used when 
considering deflection in equation 8 of BS 8110, to determine the service stress in 
reinforcement in order to determine a modification factor to be applied to the basic span to 
depth ratio. In association with yield line designs, βB is often taken as being 1.1 for the end 
span. This section seeks to prove that a value of 1.1 is valid for end spans. 
 
Equation 8 of BS 8110 is as follows: 

fs  = 2fyAsreq/(3Asprov βb ) 

Essentially 2fy/3, relates to going from Ultimate moments to serviceability moments,   
Asreq/Asprov relates to any additional steel the designer may choose to use, and 1/βb 
accounts for any redistribution that may have taken place (in the span).  
 
Ultimate moment  

Considering end spans to be critical: for one-way spanning slabs the general yield line 
formula is: 

( )
2

2

1 2

nL
m

2 1 i 1 i
=

+ + +
 

 
From this formula ultimate bending moment coefficients can be derived viz:  
 

Table A.1 Maximum end span yield line moment 'coefficient', kyab 

Max end span yield line moment 'coefficient', kyab 

i2 = 0.5 i2 = 1.0 i2 = 1.5 i2 = 2.0 

0.101 0.086 0.075 0.067 

Where 
i2   = m'/m  = first internal support moment / end span moment 
                 assuming i1 = 0 
 
Ultimate moment end span in span, Muab  = kyab x n x L2  
Where  
kyab     is the coefficient for end span moment in a yield line design.  
n = 1.4 gk + 1.6qk 

 
Serviceability moment 

At the serviceability limit state an elastic analysis is appropriate. For simple one-way 
continuous elements, the bending moment coefficients from published tables [29] may be 
used. 
 
When the serviceability and associated ultimate moments are considered together, it can be 
shown that there are few circumstances where βb should be taken as less than 1.1 for end 
spans (or 1.2 for internal spans). Figure A.1 shows that a figure of less than 1.1 for end 
spans is appropriate only when 100% of the imposed load is considered permanent and/or 
the ratio of dead to live load exceeds about 5. 
 
Of course, deflection should be considered on a case-by-case basis. 
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Figure A.1  βb  for end spans of one-way continuous slabs for ib = 1.0 

 

Flexural tensile strength of concrete  
When considering one of the options for curtailment of reinforcement in Example 3B 
(specifically part b) iii), the flexural tensile strength of concrete was used to justify the 
moment capacity of a section. Most design codes recognise some flexural strength of 
concrete and some codes and other references are illustrated in the figure below and table 
opposite. 
 
Comparing flexural tensile stresses with flexural tensile strength ignores the effects of 
restraint inherent in any slab. While Eurocode 2 gives some guidance design to BS 8110 
requires some judgement. The use of 66% of 0.55√fcu for the allowable flexural tensile 
strength of concrete in Example 3B would appear to be justified. In cases where there is 
significant restraint, designers may choose to use a lower figure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A.2  Flexural tensile strength of concrete 
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Table A.2 Flexural tensile strength of concrete 

Concrete grade (fck/fcu) Reference Flexural 
tensile  
strength 
(modulus  
of rupture) 

C20/25 C30/37 C40/50 

BS 8110 Pt. 1 [7] Cl 4.3.4.3, 
allowable flexural tensile stress 0.51 fcu  2.55 3.10 3.61 

CS TR 49, fft [32] 0.40 fcu
2

3  3.42 4.44 5.43 

ACI, fft  [33] 0.86 fcu  4.30 5.23 6.08 

Eurocode 2, fctk# Max(1.6-h/1000,1) x 0.7 x 0.3fck
2

3  

 h=200 mm 
2.17 2.84 3.44 

 h=250 mm 
2.09 2.74 3.32 

 h=300 mm 
2.01 2.64 3.19 

 h>=600 mm 
1.55 2.03 2.46 

Used  

in Practical Yield Line Design 
0.55 fcu  2.75 3.35 3.89 

Notes 

1. A partial safety factor, γm ( = 1.5) should be applied as necessary to all 
values when assessing strength.  

2. To account for restraint, shrinkage etc a reduction factor should be applied to 
the values (except to fctk) 

# As uls is being considered this is the characteristic value. According to Eurocode 2, 
Cl 7.4.3(4) it may be implied that fctk makes allowance  for restraint.  
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Failure patterns 
As an aide memoire, the failure patterns from Johansen [6] are reproduced below.  
 

 

Figure A.3  Common failure patterns 

NB. Folded plate and local failures are not shown 
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wishing to extend their portfolio of methods of analysis and design
for more efficient and effective designs.

Gerard Kennedy is the main author of this publication. He is 
a consultant to Powell Tolner and Associates, Consulting Civil
and Structural Engineers, where over a 27 year career of general
engineering practice, he became the partner in charge of design.
Gerard has a particular interest in Yield Line Analysis and its
practical application to reinforced concrete structures.

Charles Goodchild is Principal Structural Engineer of 
The Concrete Centre, where he specialises in promoting
efficiency in concrete design and construction in multi-storey
structures. In addition to writing some of the text, he was
responsible for the management of this project and publication.
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